精英家教网 > 高中数学 > 题目详情
18.已知正三角形ABC的边长为4,将它沿高AD翻折,使点B与点C间的距离为2,则四面体ABCD外接球表面积为(  )
A.16πB.$\frac{32π}{3}$C.$\frac{52π}{3}$D.$\frac{13π}{3}$

分析 三棱锥B-ACD的三条侧棱BD⊥AD、DC⊥DA,底面是正三角形,它的外接球就是它扩展为正三棱柱的外接球,求出正三棱柱的底面中心连线的中点到顶点的距离,就是球的半径,然后求球的表面积即可.

解答 解:根据题意可知三棱锥B-ACD的三条侧棱BD⊥AD、DC⊥DA,底面是正三角形,它的外接球就是它扩展为正三棱柱的外接球,求出正三棱柱的底面中心连线的中点到顶点的距离,就是球的半径,
正三棱柱ABC-A1B1C1的中,底面边长为1,棱柱的高为2$\sqrt{3}$,
由题意可得:三棱柱上下底面中点连线的中点,到三棱柱顶点的距离相等,说明中心就是外接球的球心,
∴正三棱柱ABC-A1B1C1的外接球的球心为O,外接球的半径为r,表面积为:4πr2
球心到底面的距离为$\sqrt{3}$,
底面中心到底面三角形的顶点的距离为:$\frac{2}{3}$×$\frac{\sqrt{3}}{2}$×2=$\frac{2\sqrt{3}}{3}$,
所以球的半径为r=$\sqrt{(\sqrt{3})^{2}+(\frac{2\sqrt{3}}{3})^{2}}$=$\sqrt{\frac{13}{3}}$.
外接球的表面积为:4πr2=$\frac{52π}{3}$.
故选:C.

点评 本题考查空间想象能力,计算能力;三棱柱上下底面中点连线的中点,到三棱柱顶点的距离相等,说明中心就是外接球的球心,是本题解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知A,B是球O的球面上两点,∠AOB=60°,C为该球面上的动点,若三棱锥O-ABC体积的最大值为$18\sqrt{3}$,则球O的表面积为(  )
A.36πB.64πC.144πD.256π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若{an}为等差数列,Sn是其前n项和,且S11=$\frac{11}{3}$π,{bn}为等比数列,b5•b7=$\frac{π^2}{4}$,则tan(a6+b6)的值为 (  )
A.$-\sqrt{3}$B.$±\sqrt{3}$C.$-\frac{{\sqrt{3}}}{3}$D.$±\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.掷三枚硬币,至少出现两个正面的概率为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在平面几何中有如下的结论:若正三角形ABC的内切圆的面积为S1,外接圆的面积为S2,则$\frac{{S}_{1}}{{S}_{2}}$=$\frac{1}{4}$.推广到空间几何体中可以得到类似的结论;若正四面体ABCD的内切球的体积为V1,外接球体积为V2,则$\frac{{V}_{2}}{{V}_{1}}$=27.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若存在x∈R,使得a3x-4≥${2^{{x^2}-x}}$(a>0且a≠1)成立,则实数a的取值范围是a≥2或0<a$≤\root{9}{2}$且a≠1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知a+b+c=2,且a、b、c是正数,求证:$\frac{1}{a+b}$+$\frac{1}{b+c}$+$\frac{1}{c+a}$≥$\frac{9}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若向量$\overrightarrow a$=(1,1),$\overrightarrow b$=(2,-1),$\overrightarrow c$=(-1,2),则$\overrightarrow c$等于(  )
A.$\overrightarrow a$+$\overrightarrow b$B.$\overrightarrow a$-2$\overrightarrow b$C.$\overrightarrow a$-$\overrightarrow b$D.-$\overrightarrow a$+$\overrightarrow b$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如图所示的伪代码,则输出的S的值为36.

查看答案和解析>>

同步练习册答案