精英家教网 > 高中数学 > 题目详情
3.某公司销售一种产品,给业务员返还提成的方案有三种:第一种,每销售一件该产品提成40元;第二种,采用累进制,即销售第一件产品提成为4元,以后每销售一件产品都比前一件多提成4元;第三种,销售第一件产品提成为0.5元,以后每销售一件产品都比前一件产品的提成翻一番(即是前一件提成的2倍),公司规定,业务员可在这三种方案中任选一种,且只能选一种.
(1)设销售该产品n件,按照三种提成方案获得的提成额分别为An、Bn、Cn,试求出An、Bn、Cn的表达式
(2)如果你是该公司的一名业务员,为使自己的利益最大化,你应如何选择销售提成方案?

分析 (1)方案1:为正比例关系,方案2:为等差数列关系,方案3:为等比数列关系.
(2)作出三种方案的图象,进行比较即可.

解答 解:(1)设销售该产品n件,
方案1:An=40n,
方案2:Bn=4n+$\frac{n(n-1)}{2}×4$=2n2+2n,
方案3:Cn=0.5×2n-1
(2)由$\left\{\begin{array}{l}{y=40n}\\{y=0.5×{2}^{n-1}}\end{array}\right.$,解得n≈11,
由$\left\{\begin{array}{l}{y=40n}\\{y=2{n}^{2}+2n}\end{array}\right.$,解得n=19,
即当销售量小于11时,使用方案1,
当销售量大于大于11时,使用方案3.

点评 本题主要考查函数的应用问题,结合等比数列,等差数列的定义是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.设椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0).过点($\sqrt{3}$,0),离心率e=$\frac{\sqrt{6}}{3}$.
(1)求椭圆C的方程;
(2)若倾斜角为$\frac{π}{4}$的直线l经过椭圆的右焦点且与椭圆相交于M、N两点,求弦长|MN|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.国家为了加强对烟酒生产的宏观管理,实行征收附加税政策,已知某种酒每瓶70元,不加收附加税时,每年大约销售100万瓶,若政府征收附加税,每销售100元要征税R元(税率R%),则每年的销售量将减少10R万瓶,要使每年在此项经营中所收取的附加锐不少于112万元,R应怎样确定?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在锐角△ABC中,∠A=30°,O为△ABC所在平面内一点,满足$\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|}$cosB+$\frac{\overrightarrow{AC}}{|\overrightarrow{AC}|}$cosC=$\overrightarrow{AO}$,则|$\overrightarrow{AO}$|=(  )
A.-$\frac{\sqrt{3}}{2}$B.$\sqrt{3}$C.2D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若目标函数z=x+y+1在约束条件$\left\{\begin{array}{l}{x+y-2≤0}\\{x-y+2≤0}\\{y≤n}\\{x≥-3}\end{array}\right.$下取得最大值时的最优解有无数多个,则n∈($\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.数列{an}对任意的n∈N*,满足an+1=an +1,a1=12.
(1)求数列{an}的通项公式;
(2)若bn =($\frac{1}{3}$)${\;}^{{a}_{n}}$+n,求数列{bn}的通项公式及前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知正三棱柱的体积为64,当正三棱柱外接球体积最小时,正三柱侧面积为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知f(x)=ln(x+1)+a(x2-x),a∈R,讨论函数f(x)极值点的个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在△ABC中,内角A,B,C的对边分别为a,b,c,有以下四个命题:
(1)若A-C=90°,a+c=$\sqrt{2}$b,则C=$\frac{π}{12}$;
(2)若$\frac{a}{cosA}$=$\frac{b}{cosB}$=$\frac{c}{cosC}$,则△ABC不一定为正三角形;
(3)若A=80°,a2=b(b+c),则C=60°或50°;
(4)若A-B=90°,则$\frac{2}{{c}^{2}}$=$\frac{1}{(a+b)^{2}}$+$\frac{1}{(a-b)^{2}}$.
其中正确命题的个数为(1)(4).

查看答案和解析>>

同步练习册答案