设函数f(x)=a·b,其中向量a=(cos,sin),(x∈R),向量b=(cosj,sinj)
(Ⅰ)求j的值;
(Ⅱ)若函数y=1+sin的图象按向量c=(m,n) (| m |<p)平移可得到函数
y=f(x)的图象,求向量c.
(1)j=(2)=(-,-1)
(Ⅰ)f(x)=a×b=coscosj+sinsinj=cos(-j),∵f(x)的图象关于x=对称,
∴,………………………3分
∴,又|j|<,∴j=. ………………………5分
(Ⅱ)f(x) =cos(-)=sin(+) =sin(x+),
由y=1+ sin平移到=sin(x+),只需向左平移单位,再向下平移1个单位,
考虑到函数的周期为,且=(m,n) (| m |<π),………………………8分
∴,即=(-,-1) .………………………10分
另解:f(x) =cos(-)=sin(+) =sin(x+),
由平移到,只要即,
∴=(-,-1) .………………………10分
【总结点评】本题是一道三角函数与平面向量相结合的综合问题,既考查了三角函数的变形以及三角函数的图象与性质,又考查了运用平面向量进行图象平移的知识.
科目:高中数学 来源:2014届河南省原名校联盟高三上学期第一次摸底考试理科数学试卷(解析版) 题型:解答题
设函数f(x)=-sin(2x-).
(1)求函数f(x)的最大值和最小值;
(2)△ABC的内角A,B,C的对边分别为a,b,c,c=3,f()=,若sinB=2sinA,求△ABC的面积.
查看答案和解析>>
科目:高中数学 来源:2012-2013学年河南省郑州市高三第十三次调考理科数学试卷(解析版) 题型:选择题
设函数f(x)=-lnx,则y=f(x)
A.在区间(,1),(1,e)内均有零点
B.在区间(,1),(1,e)内均无零点
C.在区间(,1)内有零点,在区间(1,e)内无零点
D.在区间(,1)内无零点,在区间(1,e)内有零点
查看答案和解析>>
科目:高中数学 来源:2014届北京市高一上学期期中考试数学AP班 题型:选择题
设函数f(x)=a(a>0),且f(2)=4,则
A. f(-1)>f(-2) B. f(1)>f(2)
C. f(2)<f(-2) D.f(-3)>f(-2)
查看答案和解析>>
科目:高中数学 来源: 题型:
设函数f(x)=a(x+)+2lnx,g(x)=.
(Ⅰ)若a>0且a≠2,直线l与函数f(x)和函数g(x)的图象相切于一点,求切线l的方程.
(Ⅱ)若f(x)在[2,4]内为单调函数,求实数a的取值范围;
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com