精英家教网 > 高中数学 > 题目详情
已知椭圆(a>b>0)经过点M(,1),离心率为
(1)求椭圆的标准方程;
(2)已知点P(,0),若A,B为已知椭圆上两动点,且满足,试问直线AB是否恒过定点,若恒过定点,请给出证明,并求出该定点的坐标;若不过,请说明理由.
(1)  (2) 直线经过定点

试题分析:(1) 椭圆(a>b>0)经过点M(,1) , 
且有 ,通过解方程可得从而得椭圆的标准方程.
(2) 设当直线轴不垂直时,设直线的方程为
 
另一方面:
 
通过以上两式就不难得到关于的等式,从而探究直线是否过定点;
至于直线AB斜率不存在的情况,只需对上面的定点进行检验即可.
试题解析:
解:(1)由题意得
因为椭圆经过点,所以

由①②③解得
所以椭圆方程为.                              4分
(2)解:①当直线轴不垂直时,设直线的方程为
代入,消去整理得            6分
(*)

所以, 
=                 8分
 

整理得 
从而 且满足(*)
所以直线的方程为                      10分
故直线经过定点                           2分
②当直线轴垂直时,若直线为 ,此时点 、 的坐标分别为
 、,亦有                12分
综上,直线经过定点.                        13分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

对任意两个非零的平面向量α和β,定义αβ=.若平面向量满足的夹角∈(0,),且都在集合{|n∈Z}中,则(   )
A.
B.1
C.
D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

向量a=(-1,1),且a与a+2b方向相同,则a·b的范围是(  )
A.(1,+∞)
B.(-1,1)
C.(-1,+∞)
D.(-∞,1)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

三角形中,设,若,则三角形的形状是(     )
A.锐角三角形B.钝角三角形C.直角三角形D.无法确定

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在△ABC中,DBC的中点,AD=8,BC=20,则的值为    

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知圆O的半径为1,PA、PB为该圆的两条切线,A、B为两切点,那么·的最小值为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知,则的夹角是(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,BC、DE是半径为1的圆O的两条直径,,则( )

A.       B.      C.       D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

为边,为对角线的矩形中,,,则实数____________.

查看答案和解析>>

同步练习册答案