精英家教网 > 高中数学 > 题目详情
已知数列{an}中,a1=3,an+1=2an-1(n≥1)
(Ⅰ)设bn=an-1(n=1,2,3…),求证:数列{bn}是等比数列;
(Ⅱ)求数列{an}的通项公式
(Ⅲ)设cn=
2n
anan+1
,求证:数列{cn}的前n项和Sn
1
3
(Ⅰ)证明:∵an+1=2an-1(n≥1)
∴两边同时减去1,得an+1-1=2(an-1)
又a1-1=2,bn=an-1
∴{bn}是以a1-1=2为首项,q=2为公比的等比数列,
(Ⅱ)由(Ⅰ)知an-1=2n,∴an=2n+1(n∈N*
(Ⅲ)证明:cn=
2n
anan+1
=
1
2n+1
-
1
2n-1+1

∴Sn=(
1
21+1
-
1
22+1
)+(
1
22+1
-
1
23+1
)+…+(
1
2n+1
-
1
2n-1+1
)=
1
3
-
1
2n-1+1
1
3

Sn
1
3
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,an+1-an=
1
3n+1
(n∈N*)
,则
lim
n→∞
an
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,an+1=
an
1+2an
,则{an}的通项公式an=
1
2n-1
1
2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,a1+2a2+3a3+…+nan=
n+1
2
an+1(n∈N*)

(1)求数列{an}的通项公式;
(2)求数列{
2n
an
}
的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=
1
2
Sn
为数列的前n项和,且Sn
1
an
的一个等比中项为n(n∈N*
),则
lim
n→∞
Sn
=
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,2nan+1=(n+1)an,则数列{an}的通项公式为(  )
A、
n
2n
B、
n
2n-1
C、
n
2n-1
D、
n+1
2n

查看答案和解析>>

同步练习册答案