精英家教网 > 高中数学 > 题目详情
1.在△ABC中,内角A,B,C所对的边分别是a,b,c,若$bsinA=2csinB,a=4,cosB=\frac{1}{4}$,则边长b的等于4.

分析 由已知条件利用正弦定理得ba=2cb,从而得到c=2,由此利用余弦定理能求出边长b的值.

解答 解:在△ABC中,内角A,B,C所对的边分别是a,b,c,
∵$bsinA=2csinB,a=4,cosB=\frac{1}{4}$,
∴ba=2cb,从而a=2c,又a=4,所以c=2,
∴$b=\sqrt{{a^2}+{c^2}-2accosB}=\sqrt{{4^2}+{2^2}-2×4×2×\frac{1}{4}}=4$.
故答案为:4.

点评 本题考查三角形的边长的求法,是中档题,解题时要认真审题,注意正弦定理和余弦定理的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知曲线C:x2+y2-4ax+2ay+20a-20=0.
①求证:不论a取何实数,曲线C必过一定点A
②当a≠2时,求证:曲线C是一个圆,且圆心在一条直线上并写出此直线方程.
③若a=1时,动点P到①中定点A及点B(-2,1)的距离之比为1:2,求点P的轨迹M,并指出曲线M与曲线C的公共点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=$\sqrt{3}sin?x$+cos(?x+$\frac{π}{3}$)+cos(?x$-\frac{π}{3}$),x∈R,?>0.若函数f(x)的最小正周期为π,
(1)求函数f(x)在区间$[{-\frac{π}{4},\frac{π}{4}}]$上的值域;
(2)则当x$∈[0,\frac{π}{2}]$时,求f(x)的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数f(x)的定义域为(-∞,-1)∪(1,+∞),且f(x+1)为奇函数,当x>1时,f(x)=2x2-12x+16,则函数y=f(x)-2的所有零点之和是5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设不等式组$\left\{\begin{array}{l}{x≥1}\\{x+y≤3}\\{y≥a(x-3)}\end{array}\right.$,其中a>0,若z=2x+y的最小值为$\frac{1}{2}$,则a=(  )
A.-$\frac{4}{3}$B.$\frac{4}{3}$C.-$\frac{3}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,△ABC为圆的内接三角形,BD为圆的弦,且BD∥AC.过点A作圆的切线与DB的延长线交于点E,AD与BC交于点F.若AB=AC,AE=6,BD=5.
(1)求证:四边形AEBC为平行四边形.
(2)求线段CF的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知数列{an}的通项公式为an=n2+kn+5,若对于任意的正整数n,都有an+1>an,则实数K的范围为k>-3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.用符号表示“点A∈l,l?α在直线l上,l?α在平面α外”为A∈l,l?α.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=ax2-bx+1.
(1)求实数a,b使不等式f(x)<0的解集是{x|3<x<4};
(2)若a为整数,b=a+2,且函数f(x)在(-2,-1)上恰有一个零点,求a的值.

查看答案和解析>>

同步练习册答案