精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系xOy中,直线l的参数方程为 (t为参数),在以坐标原点O为极点,x轴的正非负半轴为极轴,取相同单位长度的极坐标系中,圆的极坐标方程为ρ=4sinθ.
(1)求直线l被圆截得的弦长;
(2)从极点作圆C的弦,求各弦中点的极坐标方程.

【答案】
(1)解:依题,把直线l的参数方程化为普通方程为y= x,

把圆C的极坐标方程化为直角坐标方程为x2+y2=4y,即x2+(y﹣2)2=4,…(3分)

则点C(0,2)到直线l的距离d= ,于是所求的弦长为


(2)解:记所作的弦为OA,设A(ρ0,θ0),弦OA的中点M(ρ,θ),

消去ρ0,θ0,可得ρ=2sinθ即中点的极坐标方程.


【解析】(1)求出直线的普通方程,以及圆的普通方程,利用圆心到直线的距离以及半径半弦长的关系,求直线l被圆截得的弦长;(2)从极点作圆C的弦,设A(ρ0 , θ0),弦OA的中点M(ρ,θ),列出关系式,即可求各弦中点的极坐标方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】经市场调查,某旅游城市在过去的一个月内(以30天计),第t天(1≤t≤30,t∈N*)的旅游人数f(t)(单位:万人)近似地满足f(t)=4+ ,而人均日消费俄g(t)(单位:元)近似地满足g(t)=
(1)试求所有游客在该城市旅游的日消费总额W(t)(单位:万元)与时间t(1≤t≤30,t∈N*)的函数表达式;
(2)求所有游客在该城市旅游的日消费总额的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,△ABC是边长为4的等边三角形,△ABD是等腰直角三角形,AD⊥BD,平面ABC⊥平面ABD,且EC⊥平面ABC,EC=2.

(1)求证:AD⊥BE
(2)求平面AEC和平面BDE所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有下列四个命题:

①“已知函数y=f(x),x∈ D,D关于原点对称,则函数y=f(x),x∈ D为奇函数的逆命题;

②“对应边平行的两角相等的否命题;

③“a≠0,则方程ax+b=0有实根的逆否命题;

④“A∪ B=B,B≠A”的逆否命题.

其中的真命题是(  )

A. ①② B. ②③

C. ①③ D. ③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给定下列命题:①“α=,tan α=1”的逆否命题;②f(x)=cos x,f(x)为周期函数;③“a=b,|a|=|b|”的逆命题;④“xy=0,x,y中至少有一个为零的否命题.其中真命题的序号是______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和Sn=10n﹣n2(n∈N*),又bn=|an|(n∈N*).
(1)求数列{an}的通项公式;
(2)求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线、椭圆都经过点M(1,2),它们在x轴上有共同焦点,椭圆的对称轴是坐标轴,抛物线的顶点为坐标原点.则椭圆的长轴长为_____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个商场经销某种商品,根据以往资料统计,每位顾客采用的分期付款次数的分布列为:

1

2

3

4

5

0.4

0.2

0.2

0.1

0.1

商场经销一件该商品,采用1期付款,其利润为200元;采用2期或3期付款,其利润为250元;采用4期或5期付款,其利润为300元.表示经销一件该商品的利润.

(1)求购买该商品的3位顾客中,恰有2位采用1期付款的概率;

(2)求的分布列及期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,点在椭圆上

)求椭圆的方程

设动直线与椭圆有且仅有一个公共点,判断是否存在以原点为圆心的圆,满足此圆与相交于两点 (两点均不在坐标轴上),且使得直线的斜率之积为定值?若存在,求此圆的方程;若不存在,说明理由

查看答案和解析>>

同步练习册答案