精英家教网 > 高中数学 > 题目详情
在△ABC中,A,B,C的对边分别是a,b,c,其中a=
5
,b=
3
,sinB=
2
2
,则角A的取值范围一定属于(  )
A、(45°,90°)
B、(45°,90°)∪(90°,135°)
C、(0°,45°)∪(135°,180°)
D、(90°,135°)
考点:正弦定理
专题:解三角形
分析:根据题意和大边对大角求出角B,并可确定A>45°,再由三角形的内角定理得A<135°,再根据边长和角的值验证特殊情况A=90°,最后求出角A的取值范围.
解答: 解:由题意得,a=
5
,b=
3
,sinB=
2
2

所以a>b,则A>B,所以B=45°,即A>45°,
由A+B+C=180°得,A=135°-C,则A<135°,
当A=90°时,B=C=45°,所以b=c=
3
,且b2+c2=6≠a2
所以A≠90°,
综上得,角A的取值范围是(45°,90°)∪(90°,135°),
故选:B.
点评:本题考查了三角形的内角定理,大边对大角等,注意验证特殊情况.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设集合A={x|x2-x<2nx,x∈N*},集合A中元素的个数为an,数列{an}的前n项和为Sn,则S10=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列有关命题的说法正确的是(  )
A、命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”
B、“x=-1”是“x2-5x-6=0”的必要不充分条件
C、命题“若x=y,则sinx≠siny”的逆否命题为假命题
D、命题“若x2+y2≠0,则x、y不全为零”的否命题为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:

已知单位向量
a
b
的夹角为60°,则|
a
+
b
|的值为(  )
A、3
B、2
C、
3
D、
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=mx2-mx-1.
(1)若对于x∈R,f(x)<0恒成立,求实数m的取值范围;
(2)若对于x∈[1,3],f(x)<5-m恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+4ax+2a+6
(1)若函数f(x)的值域为[0,+∞),求a的值
(2)若函数f(x)的函数值均为非负数,求f(a)=2-a|a+4|的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

某校高三数学竞赛初赛考试后,对考生的成绩进行统计(考生成绩均不低于90分,满分为150分),将成绩按如下方式分成六组,第一组[90,100)、第二组[100,110)…,第六组[140,150],如图为其频率分布直方图的一部分,若第四、五、六组的人数依次成等差数列,且第六组有4人.
(Ⅰ)求第四和第五组频率,并补全频率分布直方图;
(Ⅱ)若不低于120分的同学进入决赛,不低于140分的同学为种子选手,完成下面2×2列联表(即填写空格处的数据),并判断是否有99%的把握认为“进入决赛的同学成为种子选手与专家培训有关”.
[120,140)[140,150]合计
参加培训88
未参加培训
合计4
附:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

P(K2≥k00.250.150.100.050.0250.0100.0050.001
K01.3232.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:

已知af(x)+f(-x)=bx,求f(x)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示的算法流程图中(注:“x=x+2”也可写成“x:=x+2”,均表示赋值语句),若输入的x值为-3,则输出的y值是(  )
A、
1
8
B、
1
2
C、2
D、8

查看答案和解析>>

同步练习册答案