精英家教网 > 高中数学 > 题目详情

已知数列{an}中,a1=1,a2=3,对任意n∈N*数学公式都成立,则a11-a10=________.

1024
分析:由都成立,且a1=1,a2=3,可分别求解a3≤a1+6=7a3≥2a2+1=7,a4≤a2+12=15,a4≥2a3+1=15,从而可求数列的项
解答:∵都成立,且a1=1,a2=3,
∴a3≤a1+6=7,a3≥2a2+1=7
∴a3=7
a4≤a2+12=15,a4≥2a3+1=15
∴a4=15
以此类推,a5=31,a6=63,,…
=210=1024
故答案为:1024
点评:本题主要考查了利用数列的递推公式求解数列的项,解题的关键是由不等关系得到等式
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,an+1-an=
1
3n+1
(n∈N*)
,则
lim
n→∞
an
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,an+1=
an
1+2an
,则{an}的通项公式an=
1
2n-1
1
2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,a1+2a2+3a3+…+nan=
n+1
2
an+1(n∈N*)

(1)求数列{an}的通项公式;
(2)求数列{
2n
an
}
的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=
1
2
Sn
为数列的前n项和,且Sn
1
an
的一个等比中项为n(n∈N*
),则
lim
n→∞
Sn
=
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,2nan+1=(n+1)an,则数列{an}的通项公式为(  )
A、
n
2n
B、
n
2n-1
C、
n
2n-1
D、
n+1
2n

查看答案和解析>>

同步练习册答案