精英家教网 > 高中数学 > 题目详情
18.已知复数z满足z=$\frac{(1+i)(2-i)}{i}$(i为虚数单位),则$\overline{z}$在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 直接利用复数的代数形式的混合运算化简求解即可.

解答 解:z=$\frac{(1+i)(2-i)}{i}$=1-3i,$\overline{z}$=1+3i,$\overline{z}$在复平面内对应的点的坐标(1,3)在第一象限.
故选:A.

点评 本题考查复数的代数形式的混合运算,复数的几何意义,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.设函数f(x)=sin(ωx+φ)+$\sqrt{3}$cos(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)与直线y=2的相邻两个交点的距离为π,且f(x)-f(-x)=0,若g(x)=sin(ωx+φ),则(  )
A.y=g(x)在(0,$\frac{π}{2}$)上递减B.y=g(x)在(0,$\frac{π}{6}$)上递减
C.y=g(x)在(0,$\frac{π}{2}$)上递增D.y=g(x)在(0,$\frac{π}{6}$)上递增

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知直线3x+ay=0(a>0)被圆(x-2)2+y2=4所截得的弦长为2,则a的值为(  )
A.3$\sqrt{3}$B.2$\sqrt{3}$C.$\sqrt{3}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在四棱柱ABCD一A1B1C1D1中,底面ABCD是菱形,且AB=AA1=$\sqrt{5}$,BD=4,A1在底面 ABCD的射影是AC与BD的交点O.
(1)证明:在侧棱AA1上存在-点E,使得0E⊥平面BB1D1D,并求出AE的长;
(2)求二面角A1一B1D-D1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若四边形ABCD满足:$\overrightarrow{AB}$+$\overrightarrow{CD}$=0,($\overrightarrow{AB}$+$\overrightarrow{DA}$)•$\overrightarrow{AC}$=0,则该四边形的形状是菱形.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知i是虚数单位,则|$\frac{3-i}{(1+i)^{2}}$+$\frac{1+3i}{(1-i)^{2}}$|=$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.下面图形由小正方形组成,请观察图1至图4的规律,并依此规律,写出第16个图形中小正方形的个数是136.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知平面向量$\overrightarrow{a}$、$\overrightarrow{b}$,|$\overrightarrow{a}$|=3,|$\overrightarrow{b}$|=2$\sqrt{3}$且$\overrightarrow{a}$-$\overrightarrow{b}$与$\overrightarrow{a}$垂直,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.不等式组$\left\{\begin{array}{l}{x≥0}\\{y≥0}\\{x+y≤1}\end{array}\right.$表示的平面区域的面积为(  )
A.1B.2C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

同步练习册答案