精英家教网 > 高中数学 > 题目详情

映射fAB,如果满足集合B中的任意一个元素在A中都有原象,则称为“满射”. 已知集合A中有4个元素,集合B中有3个元素,那么从AB的不同满射的个数为( )

A.24              B.6                C.36                D.72

 

解析:C 集合A中必须有两个元素和B中的一个元素对应,A中剩下的两个元素和B中的其余元素相对应,故应为
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

16、定义:对于映射f:A→B,如果A中的不同元素有不同的象,且B中的每一个元素都有原象,则称f:A→B为一一映射.如果存在对应关系φ,使A到B成为一一映射,则称A和B具有相同的势.给出下列命题:
①A={奇数},B={偶数},则A和B 具有相同的势;
②有两个同心圆,A是小圆上所有点形成的集合,B是大圆上所有点形成的集合,则A和B 不具有相同的势;
③A是B的真子集,则A和B不可能具有相同的势;
④若A和B具有相同的势,B和C具有相同的势,则A和C具有相同的势
其中真命题为
①④

查看答案和解析>>

科目:高中数学 来源: 题型:

10、已知集合A={1,2,3,4},B={-1,-2},设映射f:A→B,如果集合B中的元素都是A中元素在f下的象,那么这样的映射有
14
个.

查看答案和解析>>

科目:高中数学 来源: 题型:

3、映射f:A→B,如果满足集合B中的任意一个元素在A中都有原象,则称为“满射”.已知集合A中有4个元素,集合B中有3个元素,那么从A到B的不同满射的个数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={1,2,3,4},集合B={-1,-2},设映射f:A→B.如果集合B中的元素都是A中元素在f下的象,那么这样的映射f有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

定义:对于映射f:A→B,如果A中的不同元素有不同的象,且B中的每一个元素都有原象,则称f:A→B为一一映射.如果存在对应关系φ,使A到B成为一一映射,则称A和B具有相同的势.给出下列命题:
①A={奇数},B={偶数},则A和B 具有相同的势;
②A是直角坐标系平面内所有点形成的集合,B是复数集,则A和B 不具有相同的势;
③若A={
a
b
},其中
a
b
是不共线向量,B={
c
|
c
a
b
共面的任意向量},则A和B不可能具有相同的势;
④若区间A=(-1,1),B=(-∞,+∞),则A和B具有相同的势.
其中真命题为
①③④
①③④

查看答案和解析>>

同步练习册答案