精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)的图象如图所示.
(1)求函数f(x)的解析式;
(2)求函数f(x)的定义域和值域.

分析 (1)使用待定系数法解出;
(2)根据图象最左边到最右边的横坐标范围及定义域,最下边到最上边的纵坐标即为值域,去除取不到的点即可.

解答 解:(1)当-1≤x<0时,设f(x)=ax+b,则$\left\{\begin{array}{l}{-a+b=0}\\{b=1}\end{array}\right.$,
解得a=1,b=1,∴f(x)=x+1;
当0≤x≤1时,设f(x)=kx,则k=-1,∴f(x)=-x,
∴f(x)的解析式为f(x)=$\left\{\begin{array}{l}{x+1,-1≤x<0}\\{-x,0≤x≤1}\end{array}\right.$
(2)定义域为[-1,1],值域为[-1,1)

点评 本题考查了分段函数的解析式与图象,确定x在各段上的取值范围是关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知f(x)=x2-2kx-3k2
(1)若关于x的不等式f(x)<0的解集为∅,求k的取值范围;
(2)解关于x的不等式f(x)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若函数y=cos2x与函数y=sin(2x+φ)在[0,$\frac{π}{4}$]上的单调性相同,则φ的一个值为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{3π}{4}$D.$\frac{3π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.(Ⅰ)计算:(a${\;}^{\frac{8}{5}}$•b${\;}^{\frac{6}{5}}$)${\;}^{\frac{1}{2}}$÷$\root{5}{{a}^{4}}$÷$\root{5}{{b}^{3}}$;
(Ⅱ)已知lga+lgb=2lg(a-2b),求$\frac{a}{b}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知tanα=2,则$\frac{si{n}^{2}α+co{s}^{2}(π-α)}{1+co{s}^{2}α}$的值为$\frac{5}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.对于函数若f(x)=ax2+(b+1)x+b-2(a≠0),存在实数x0,使f(x0)=x0成立,则称x0为f(x)的“希望值”.
(1)当a=2,b=-2时,求f(x)的希望值;
(2)若对于任意实数b,函数f(x)恒有希望值,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数f(x)=$\frac{2}{x-1}$,x∈[2,3]的最大值是(  )
A.2B.3C.1D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知a>b>c,用比较法证明:a2b+b2c+c2a>ab2+bc2+ca2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在△ABC中,a,b,c分别为角A,B,C所对的边,已知a=8,b=7,B=60°,则S△ABC=6$\sqrt{3}$或10$\sqrt{3}$.

查看答案和解析>>

同步练习册答案