精英家教网 > 高中数学 > 题目详情

(本小题满分13分)时下,网校教学越越受到广大学生的喜爱,它已经成为学生们课外学习的一种趋势,假设某网校的套题每日的销售量(单位:千套)与销售价格(单位:元/套)满足的关系式,其中为常数.已知销售价格为4元/套时,每日可售出套题21千套.
(1)求的值;
(2)假设网校的员工工资、办公等所有开销折合为每套题2元(只考虑销售出的套数),试确定销售价格的值,使网校每日销售套题所获得的利润最大.(保留1位小数)

(1)10;(2)3.3元/套

解析试题分析:(1)由于销售价格为4元/套时,每日可售出套题21千套.所以将="4," =21代入函数关系式即可求得的值.
(2)因为网校每日销售套题所获得的利润等于每日的销量×每套的利润.每套卷的利润是.所以乘以每日的销售量即可得利润.所得含三次的代数式,通过求导在定义域内只有一个零点.由函数的单调性可得函数的最大值.并求出取到最大值时的x的值即可.
试题解析:(1)因为时,,  
代入关系式,得
解得.        6分
(2)由(1)可知,套题每日的销售量, 
所以每日销售套题所获得的利润
…8分
,从而.  
,得,且在上,,函数单调递增;在上,,函数单调递减,      10分
所以是函数内的极大值点,也是最大值点,
所以当时,函数取得最大值. 
故当销售价格为3.3元/套时,网校每日销售套题所获得的利润最大.         13分
考点:1.代数式的求值.2.函数的最值.3.函数的导数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知,函数,记
(1)求函数的定义域及其零点;
(2)若关于的方程在区间内仅有一解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)求的值;
(Ⅱ)用函数单调性的定义证明函数上是减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量,其中.函数在区间上有最大值为4,设.
(1)求实数的值;
(2)若不等式上恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)若,当时,求的取值范围;
(2)若定义在上奇函数满足,且当时,,求上的反函数
(3)若关于的不等式在区间上有解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某开发商用9000万元在市区购买一块土地建一幢写字楼,规划要求写字楼每层建筑面积为2000平方米.已知该写字楼第一层的建筑费用为每平方米4000元,从第二层开始,每一层的建筑费用比其下面一层每平方米增加100元.
(1)若该写字楼共x层,总开发费用为y万元,求函数y=f(x)的表达式;(总开发费用=总建筑费用+购地费用)
(2)要使整幢写字楼每平方米的平均开发费用最低,该写字楼应建为多少层?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,点在函数的图象上,
在函数的图象上,设
(1)求数列的通项公式;
(2)记,求数列的前项和为
(3)已知,记数列的前项和为,数列的前项和为,试比较的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某市电力公司在电力供不应求时期,为了居民节约用电,采用“阶梯电价”方法计算电价,每月用电不超过度时,按每度元计费,每月用电超过度时,超过部分按每度元计费,每月用电超过度时,超过部分按每度元计费
(Ⅰ)设每月用电度,应交电费元,写出关于的函数;
(Ⅱ)已知小王家第一季度缴费情况如下:

月份
1
2
3
合计
缴费金额
87元
62元
45元8角
194元8角
问:小王家第一季度共用了多少度电?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设命题pf(x)=在区间(1,+∞)上是减函数;命题qx1x2是方程x2ax-2=0的两个实根,且不等式m2+5m-3≥|x1x2|对任意的实数a∈[-1,1]恒成立.若pq为真,试求实数m的取值范围.

查看答案和解析>>

同步练习册答案