精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(Ⅰ)求函数的最小正周期;

(Ⅱ)若存在,使不等式成立,求实数的取值范围.

【答案】(Ⅰ) (Ⅱ)

【解析】

(Ⅰ)利用三角函数的恒等变换化简函数fx)的解析式为2sin2x+),从而求出它的最小正周期.(Ⅱ)根据,可得 sin2x0+[1]fx0)的值域为[12],若存在使不等式fx0)<m成立,m需大于fx0)的最小值.

(Ⅰ)

[2sinx+cosx]cosxsin2x++cos2x

sin2x+cos2x=2sin2x+

∴函数fx)的最小周期T

(Ⅱ),∴2x0+[],∴sin2x0+[1]

fx0)的值域为[12]

∵存在,使fx)<m成立,∴m>﹣1

故实数m的取值范围为(﹣1+∞).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直三棱柱A1B1C1﹣ABC中, ,AB=AC=AA1=1,已知G和E分别为A1B1和CC1的中点,D与F分别为线段AC和AB上的动点(不包括端点),若GD⊥EF,则线段DF的长度的取值范围为(
A.[ ,1)
B.[ ,1]
C.( ,1)
D.[ ,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】秦九韶是我国南宋时期的数学家,他在所著的《数学九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法,如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入n,x的值分别为4,2,则输出v的值为(
A.66
B.33
C.16
D.8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现给出以下四个命题:

①已知中,角A,B,C的对边为a,b,c,当时,满足条件的三角形共有1个;

②已知中,角A,B,C的对边为a,b,c,若三角形,这个三角形的最大角是

③设是两条不同的直线,是两个不同的平面,若,则

④设是两条不同的直线,是两个不同的平面,若,则

其中正确的序号是__________(写出所有正确说法的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知多面体EABCDF的底面ABCD是边长为2的正方形,EA⊥底面ABCD,FD∥EA,且
(Ⅰ)记线段BC的中点为K,在平面ABCD内过点K作一条直线与平面ECF平行,要求保留作图痕迹,但不要求证明.
(Ⅱ)求直线EB与平面ECF所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是定义域为的奇函数.

(1)求实数的值;

(2)若,不等式上恒成立,求实数的取值范围;

(3)若 上最小值为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆的圆心在抛物线上,圆过原点且与抛物线的准线相切.

(1)求该抛物线的方程;

(2)过抛物线焦点的直线交抛物线于 两点,分别在点 处作抛物线的两条切线交于点,求三角形面积的最小值及此时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-5:不等式选讲]
已知函数f(x)=﹣x2+ax+4,g(x)=|x+1|+|x﹣1|.(10分)
(1)当a=1时,求不等式f(x)≥g(x)的解集;
(2)若不等式f(x)≥g(x)的解集包含[﹣1,1],求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),直线的参数方程为为参数),且直线与曲线交于两点,以直角坐标系的原点为极点,以轴的正半轴为极轴建立极坐标系.

(1)求曲线的极坐标方程;

(2) 已知点的极坐标为,求的值

查看答案和解析>>

同步练习册答案