精英家教网 > 高中数学 > 题目详情

已知函数的图象如图所示,则满足的关系是(   )

A. B.
C. D.

A

解析试题分析: ∵函数f(x)=loga(2x+b-1)是增函数且随着x增大,2x+b-1增大,f(x)也增大.
∴a>1,∴0<<1,∵当x=0时,f(0)=logab<0,∴0<b<1.又∵f(0)=logab>-1=loga
∴b>,∴0<a-1<b<1,故结合选项可知选A.
考点:本题主要考查了对数函数的图象性质,考查学生的识图能力.考查学生的数形结合能力和等价转化思想.
点评:利用对数函数和函数图象平移的方法列出关于a,b的不等关系是解决本题的关键.利用好图形中的标注的(0,-1)点.利用复合函数思想进行单调性的判断,进而判断出底数与1的大小关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:单选题

已知在区间上是增函数,实数组成集合;设关于的方程的两个非零实根实数使得不等式使得对任意恒成立,则的解集是(   )

A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

函数的定义域为R,且定义如下:(其中M是实数集R的非空真子集),在实数集R上有两个非空真子集A、B满足,则函数的值域为
A.
B.
C.
D. 

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知函数,正实数满足,且,若在区间上的最大值为2,则的值为(  )

A.    B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

若函数

A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

设f(x)是R上的奇函数,且当x>0时,f(x)=x(1+),则当x<0时,f(x)=(    )

A.-x(1+) B.x(1+) C.-x(1-) D. x(1-)

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

 

A.R B.[-9,+C.[-8,1] D.[-9,1]

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

设函数上单调递增,则的大小关系为(  )

A. B.
C. D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

对任意实数,定义运算,其中是常数,等式右边的运算是通常的加法和乘法运算.已知,并且有一个非零常数,使得对任意实数,都有,则的值是(      )

A. B. C. D.

查看答案和解析>>

同步练习册答案