精英家教网 > 高中数学 > 题目详情
将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积为(  )
A.B.C.D.
C

试题分析:将边长为1的正方形以其一边所在直线为旋转轴旋转一周得到的几何体为底面为半径为的圆、高为1的圆柱,其侧面展开图为长为,宽为1,所以所得几何体的侧面积为.故选C.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

某高速公路收费站入口处的安全标识墩如图1所示.墩的上半部分是正四棱锥P-EFGH,下半部分是长方体ABCD-EFGH.图2、图3分别是该标识墩的正视图和俯视图.

(1)请画出该安全标识墩的侧视图;
(2)求该安全标识墩的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

△ABC的斜二侧直观图如图所示,则△ABC的面积为(  )
A.
2
2
B.1C.
2
D.2

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在正三棱柱中,,异面直线所成角的大小为,该三棱柱的体积为               

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

以边长为1的正方形的一边所在所在直线为旋转轴,将该正方形旋转一周所得圆柱的侧面积等于 (   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知某几何体的俯视图是如图所示的矩形,正视图是一个底边长为8,高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6,高为4的等腰三角形.
(1)求该几何体的体积V;
(2)求该几何体的侧面积S.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知平面平面,且四边形为矩形,四边形为直角梯形,
,,,,.
(1)作出这个几何体的三视图(不要求写作法).
(2)设是直线上的动点,判断并证明直线与直线的位置关系.
(3) 求三棱锥的体积..

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

正方体ABCD﹣A1B1C1D1中,E为线段B1D1上的一个动点,则下列结论中错误的是(  )
A.AC⊥BE
B.B1E∥平面ABCD
C.三棱锥E﹣ABC的体积为定值
D.直线B1E⊥直线BC1

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知△ABC为等腰直角三角形,斜边BC上的中线AD = 2,将△ABC沿AD折成60°的二面角,连结BC,则三棱锥C - ABD的体积为       

查看答案和解析>>

同步练习册答案