精英家教网 > 高中数学 > 题目详情
(2012•南宁模拟)若关于x的一元二次方程x2-ax+1=0有两个不同的正数根,则实数a的取值范围是
(2,+∞)
(2,+∞)
分析:由于关于x的一元二次方程x2-ax+1=0有两个不同的正数根,可得
=a2-4>0
x1+x2=a>0
x1•x2=1>0
,由此解得 a的范围.
解答:解:由于关于x的一元二次方程x2-ax+1=0有两个不同的正数根,
 = a2-4 > 0
x1  +x2  =a >0
x1  •2 =1>0
,解得 a>2,
故答案为 (2,+∞).
点评:本题主要考查函数的零点的定义,函数的零点与方程的根的关系,体现了转化的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•南宁模拟)若函数y=f(x)的图象经过(0,-1),则y=f(x+4)的反函数图象经过点(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•南宁模拟)如图,在多面体ABCDE中,DB⊥平面ABC,AE∥DB,且△ABC是边长为2的等边三角形,AE=1,CD与平面ABDE所成角的正弦值为
6
4

(1)在线段DC上是否存在一点F,使得EF⊥面DBC,若存在,求线段DF的长度,若不存在,说明理由;
(2)求二面角D-EC-B的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•南宁模拟)若Sn=1-2+3-4+…+(-1
)
n-1
 
•n,S17+S33+S50等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•南宁模拟)已知命题p:
2x
x-1
≤1
,命题q:(x+a)(x-3)<0,若p是q的充分不必要条件,则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•南宁模拟)从6个运动员中选出4人参加4×100米的接力赛,如果甲、乙两人都不跑第一棒,那么不同的参赛方法的种数为(  )

查看答案和解析>>

同步练习册答案