精英家教网 > 高中数学 > 题目详情

已知是定义在上的增函数,且记

(1)设,若数列满足,试写出的通项公式及前的和

(2)对于任意,若,判断的值的符号。

(1)(2)


解析:

(1),则,即数列是以为首项,为公比的等比数列,

,;

(2)若,则,∵是定义在上的增函数 

,则 

,即,与矛盾,

练习册系列答案
相关习题

科目:高中数学 来源:2014届云南省高一上学期期中数学试卷(解析版) 题型:解答题

(本小题满分12分)已知函数是定义在上的奇函数,且

(1)确定函数的解析式;

(2)用定义证明上是增函数;

(3)解不等式.

【解析】第一问利用函数的奇函数性质可知f(0)=0

结合条件,解得函数解析式

第二问中,利用函数单调性的定义,作差变形,定号,证明。

第三问中,结合第二问中的单调性,可知要是原式有意义的利用变量大,则函数值大的关系得到结论。

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年浙江省高三三月月考数学(理)试卷 题型:选择题

已知函数是定义在R上的奇函数,且,在[0,2]上是增函

数,则下列结论:

(1)若,则;[来源:Z§xx§k.Com]

(2)若

(3)若方程在[-8,8]内恰有四个不同的根,则

其中正确的有(     )

A.0个              B.1个             C.2个               D.3个

 

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题分A,B类,满分12分,任选一类,若两类都选,以A类记分)

(A类)已知函数的图象恒过定点,且点又在函

的图象.

(1)求实数的值;                (2)解不等式

(3)有两个不等实根时,求的取值范围.

(B类)设是定义在上的函数,对任意,恒有

.

⑴求的值;     ⑵求证:为奇函数;

⑶若函数上的增函数,已知,求

取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数是定义在R上的奇函数,且,在[0,2]上增函

数,则下列结论:

(1)若,则

(2)若

(3)若方程在[-8,8]内恰有四个不同的根,则

其中正确的有(     )

A.0个              B.1个             C.2个              D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数是定义在R上的奇函数,且,在[0,2]上是增函

数,则下列结论:①若,则;②若

③若方程在[-8,8]内恰有四个不同的角,则,其中正确的有     (   )

A.0个  B.1个  C.2个  D.3个

查看答案和解析>>

同步练习册答案