(本题满分14分 )如图,在三棱柱
中,所有的棱长都为2,
.
(1)求证:
;
(2)当三棱柱
的体积最大时,
求平面
与平面
所成的锐角的余弦值.
(1)见解析;(2)
.
【解析】(1)因为
,取AC的中点M,连接BM,A1M,可知三角形A1AC和三角形ABC都为正三角形,所以易证AC垂直平面A1MB,从而证得
.
(2) 当三棱柱
的体积最大时,点
到平面
的距离最大,此时
平面
.由(1)知A1在底面的射影一定在直线BM上,并且三角形A1MB是等腰三角形,
所以当O与M重合时,点
到平面
的距离最大.然后在此基础上再求二面角的大小即可.
![]()
另解:当三棱柱
的体积最大时,点
到平面
的距离最大,此时
平面
.以
所在的直线分别为
轴,建立直角坐标系,依题意得
.
由
得
,设平面
的一个法向量为![]()
而
,则
,取![]()
而
平面
,则平面
的一个法向量为![]()
于是
,
故平面
与平面
所成锐角的余弦值为
.
科目:高中数学 来源: 题型:
| π |
| 3 |
|
查看答案和解析>>
科目:高中数学 来源: 题型:
(本题满分14分)如图,四边形ABCD为矩形,AD⊥平面ABE,AE=EB=BC=2,
为
上的点,且BF⊥平面ACE.
(1)求证:AE⊥BE;(2)求三棱锥D-AEC的体积;(3)设M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN∥平面DAE.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年江苏省高三上学期期中考试数学 题型:解答题
(本题满分14分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}
(Ⅰ)若A
B=[0,3],求实数m的值
(Ⅱ)若A
CRB,求实数m的取值范围
查看答案和解析>>
科目:高中数学 来源:2010-2011学年福建省高三上学期第三次月考理科数学卷 题型:解答题
(本题满分14分)
已知点
是⊙
:
上的任意一点,过
作
垂直
轴于
,动点
满足
。
(1)求动点
的轨迹方程;
(2)已知点
,在动点
的轨迹上是否存在两个不重合的两点
、
,使
(O是坐标原点),若存在,求出直线
的方程,若不存在,请说明理由。
查看答案和解析>>
科目:高中数学 来源:2014届江西省高一第二学期入学考试数学 题型:解答题
(本题满分14分)已知函数
.
(1)求函数
的定义域;
(2)判断
的奇偶性;
(3)方程
是否有根?如果有根
,请求出一个长度为
的区间
,使![]()
![]()
;如果没有,请说明理由?(注:区间的长度为
).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com