精英家教网 > 高中数学 > 题目详情

如图,已知P为矩形ABCD所在平面外一点,M、N分别为AB、PC的中点,求证:MN∥平面PAD.

答案:
解析:


提示:

利用向量知识来判断直线和平面平行是一种很重要的判定线面平行的方法.这种方法与用线面平行的判定定理来证线面平行相比,更为简洁、实用,它省去需添加辅助线这一令多数学生头疼的问题.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知点P为椭圆
x2
25
+
y2
9
=1
在第一象限内的任意一点,过椭圆的右顶点A和上顶点B分别作与y轴和x轴的平行线交于C,过P引BC、AC的平行线交AC于N,交BC于M,交AB于D、E,矩形PMCN的面积是S1,三角形PDE的面积是S2,则S1:S2=
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,如图,已知在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,E、F分别是AB、PD的中点.
(Ⅰ)求证:AF∥平面PEC;
(Ⅱ)若PD与平面ABCD所成角为60°,且AD=2,AB=4,求点A到平面PED的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=
2
,AF=1

(1)求二面角A-DF-B的大小;
(2)在线段AC上找一点P,使PF与AD所成的角为60°,试确定点P的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知平面α∩β=?,A,B∈α,C,D∈?,ABCD为矩形,P∈B,PA⊥α,且PA=AD,M、N、F依次是AB、PC、PD的中点.
(1)求证:四边形AMNF为平行四边形;
(2)求证:MN⊥AB
(3)求异面直线PA与MN所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知矩形ABCD的边AB=2,BC=
2
,点E、F分别是边AB、CD的中点,沿AF、EC分别把三角形ADF和三角形EBC折起,使得点D和点B重合,记重合后的位置为点P.
(1)求证:平面PCE⊥平面PCF;
(2)设M、N分别为棱PA、EC的中点,求直线MN与平面PAE所成角的正弦;
(3)求二面角A-PE-C的大小.

查看答案和解析>>

同步练习册答案