精英家教网 > 高中数学 > 题目详情

已知函数f(x)=数学公式
(1)求函数f(x)的单调增区间.
(2)若函数f(x)在[1,e]上的最小值为数学公式,求实数a的值.

解:∵f(x)=
∴函数的定义域为(0,+∞)
且f'(x)=+=
①当a≥0时,f'(x)≥0恒成立,
∴函数f(x)的单调增区间为(0,+∞)
②当a<0时,令f'(x)≥0,则x>-a
∴函数f(x)的单调增区间为(-a,+∞)
(II)由(I)可知,f'(x)=
①若a≥-1,则x+a≥0,则f'(x)≥0恒成立,
函数f(x)在[1,e]上为增函数
∴f(x)的最小值为:f(1)=-a=,此时a=-(舍去)
②若a≤-e,则f'(x)≤0恒成立,
函数f(x)在[1,e]上为减函数
∴f(x)的最小值为:f(e)=1-=,此时a=-(舍去)
③若-e<a<-1,当1<x<-a时,则f'(x)<0,
当-a<x<e时,f'(x)>0,
∴f(x)的最小值为:f(-a)=ln(-a)+1=,此时a=-
综上所述:a=-
分析:(1)要求函数f(x)的单调增区间,即求导函数值大于等于0的区间,我们根据求出函数导函数的解析式,结合函数的定义域,分类讨论后,即可得到答案.
(2)由(1)中函数的导函数的解析式,我们对a的取值进行分析讨论,求出对应的函数的单调区间,并分析函数f(x)在[1,e]上何时取最小值,分析后即可得到答案.
点评:本题考查的知识点是利用导数研究函数的单调性,利用导数求闭区间上函数的最值,其中根据导函数的解析式,对参数a进行分析讨论是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案