精英家教网 > 高中数学 > 题目详情
已知在四面体ABCD中,E,F分别是AC,BD的中点,若AB=2,CD=4,EF⊥AB,则EF与CD所成的角的度数为(  )
分析:设G为AD的中点,连接GF,GE,利用三角形中位线定理,可证出EF⊥GF且∠FEG或其补角即为EF与CD所成角.最后在Rt△EFG中,利用正弦的定义算出∠GEF=30°,即得EF与CD所成的角的度数.
解答:解:设G为AD的中点,连接GF,GE,
则GF,GE分别为△ABD,△ACD的中线.
由此可得,GF∥AB且GF=
1
2
AB=1,
GE∥CD,且GE=
1
2
CD=2,
∴∠FEG或其补角即为EF与CD所成角.
又∵EF⊥AB,GF∥AB,∴EF⊥GF
因此,Rt△EFG中,GF=1,GE=2,
由正弦的定义,得sin∠GEF=
GF
GE
=
1
2
,可得∠GEF=30°.
∴EF与CD所成的角的度数为30°
故选:D
点评:本题给出空间四边形相对的棱长,在已知对角线的中点连线与一条棱垂直的情况下求异面直线所成的角,着重考查了是异面直线所成的定义及其求法等知识,属于中档题.本题利用三角形中位线定理,平行线的性质是解决问题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知在四面体ABCD中,E,F分别是AC,BD的中点,若AB=2,CD=4,EF⊥AB,则EF与CD所成的角的度数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在四面体ABCD中,E、F分别是AC、BD的中点,若CD=2AB=4,EF⊥AB,则EF与CD所成的角为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在△ABC中,a,b,c为内角A,B,C所对的边长,r为内切圆的半径,则△ABC的面积S=
1
2
(a+b+c)
•r,将此结论类比到空间,已知在四面体ABCD中,已知在四面体ABCD中,
S1,S2,S3,S4分别为四个面的面积,r为内切球的半径
S1,S2,S3,S4分别为四个面的面积,r为内切球的半径
,则
四面体ABCD的体积V=
1
3
(S1+S2+S3+S4).r
四面体ABCD的体积V=
1
3
(S1+S2+S3+S4).r

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知在四面体ABCD中,AC=BD,而且AC⊥BD,E,F,G,H分别是边AB,BC,CD,DA的中点.
求证:四边形EFGH是正方形.

查看答案和解析>>

同步练习册答案