精英家教网 > 高中数学 > 题目详情
设函数f(x)=e2x+3x(x∈R),则f(x)( )
A.有最大值
B.有最小值
C.是增函数
D.是减函数
【答案】分析:利用导数即可判断出其单调性.从而判断出正确选项
解答:解:∵函数f(x)=e2x+3x(x∈R),∴f(x)=2e2x+3>0,
∴函数f(x)在R上单调递增.
故选C.
点评:熟练掌握利用导数研究函数单调性的方法是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=ax2+bx+c,已知f(0)=1,f(x)=f(3-x),且函数f(x)的图象与直线x+y=0有且只有一个交点.
(1)求函数f(x)的解析式;
(2)当a>
1
2
时,若函数g(x)=
f(lnx)+k-1
lnx
在区间[e,e2]上是单调函数,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=e2(x-1),且f-1(x)为f(x)的反函数,若函数g(x)=
x+2(x≤0)
f-1(x) (x>0)
,则g[g(-1)]=
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

设函数f(x)=e2(x-1),且f-1(x)为f(x)的反函数,若函数数学公式,则g[g(-1)]=________.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年重庆市南开中学高三(上)9月月考数学试卷(理科)(解析版) 题型:填空题

设函数f(x)=e2(x-1),且f-1(x)为f(x)的反函数,若函数,则g[g(-1)]=   

查看答案和解析>>

科目:高中数学 来源:2010-2011学年重庆市西南师大附中高三(上)9月月考数学试卷(理科)(解析版) 题型:填空题

设函数f(x)=e2(x-1),且f-1(x)为f(x)的反函数,若函数,则g[g(-1)]=   

查看答案和解析>>

同步练习册答案