| A. | 3 | B. | 1 | C. | 2 | D. | 4 |
分析 设SB=BC=x,则SC=$\sqrt{2}$x,由题意SB=BC=SA=AC=x,SC为三棱锥的外接球的直径.过S点作SD⊥平面ABC,连接BD,AD,可知∠CBD=∠CAD=90°,∠SAD=60°,利用三棱锥的体积公式求出x,即可求出三棱锥的外接球的半径.
解答 解
:如图所示,设SB=BC=x,则SC=$\sqrt{2}$x,由题意SB=BC=SA=AC=x,SC为三棱锥的外接球的直径.
过S点作SD⊥平面ABC,连接BD,AD,可知∠CBD=∠CAD=90°,∠SAD=60°,D点在AB边上的中线上,则AB被CD垂直平分,设交点为E,
∵SA=x,∴AD=$\frac{1}{2}$x,SD=$\frac{\sqrt{3}}{2}$x,
∴CD=$\frac{\sqrt{5}}{2}$x,
∴$\frac{1}{2}x×\frac{1}{2}x=\frac{1}{2}×\frac{\sqrt{5}}{2}x$×AE,
∴AE=$\frac{1}{\sqrt{5}}$x,
又x2=CE×$\frac{\sqrt{5}}{2}$x,
∴CE=$\frac{2}{\sqrt{5}}$x,
∴S△ABC=$\frac{1}{2}×\frac{2}{\sqrt{5}}x×\frac{2}{\sqrt{5}}x$x=$\frac{2}{5}$x2,
∵三棱锥S-ABC的体积为$\frac{2\sqrt{6}}{15}$,
∴$\frac{2\sqrt{6}}{15}$=$\frac{1}{3}$×$\frac{2}{5}$x2×$\frac{\sqrt{3}}{2}$x,
∴x=$\sqrt{2}$,
∴SC=2,
∴三棱锥的外接球的半径为1,
故选:B.
点评 本题考查三棱锥体积的计算,考查三棱锥的外接球的半径,正确求体积是关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com