精英家教网 > 高中数学 > 题目详情
7.掷一颗质地均匀的骰子出现点数是5的概率为$\frac{1}{6}$.

分析 先求出出现点数的基本事件总数,再求出出现的点数是5包含的基本事件个数,由此能求出掷一颗质地均匀的骰子出现点数是5的概率.

解答 解:掷一颗质地均匀的骰子,
出现点数的基本事件总数n=6,
出现的点数是5包含的基本事件个数m=1,
∴掷一颗质地均匀的骰子出现点数是5的概率为p=$\frac{1}{6}$.
故答案为:$\frac{1}{6}$.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=2asin2x+2sinxcosx-a的图象关于直线x=$\frac{5π}{12}$对称.
(1)求常数a;
(2)当x∈[0,$\frac{π}{2}$]时,求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图1,湖岸AE可近似地看成直线,营救人员在A处发现湖中B处有人落水后立即进行营救.己知B到AE的距离为20米,∠BAE=50°.营救人员在岸上的行进速度为7米/秒,在湖中受水流等影响后的实际行进速度为1米/秒,落水人以$\frac{1}{5}$米/秒的速度沿$\overrightarrow{AE}$方向漂流.记营救人员从发现有人落水到接触到落水人的时间为t.
(1)如图2,若营救人员直接从A处入水救人,求出t的值.
(2)如图3,营救人员要用最少的时间救人,沿岸边从A跑到C处再入水救人,在湖中行进速度与$\overrightarrow{AE}$的夹角为α,试用α表示时间r,并求出t的最小值(结果保留根号).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知圆的方程为x2+(y-1)2=4,若过点P(1,$\frac{1}{2}$)的直线l与圆交于A、B两点,圆心为C,则圆∠ACB最小时,直线l的方程为4x-2y-3=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.当关于x的方程的根满足下列条件时,求实数k的取值范围.
(1)方程x2-4x+k+2=0的两根都在区间[-1,3]上;
(2)方程x2+kx+1=0的一个根在区间(0,1)上,另一根在区间(1,2)上;
(3)方程x2+kx+2=0至少有一个实根小于-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.圆x2+y2-2x-5=0与圆x2+y2+2x-4y-4=0的交点为A,B,
(1)求线段AB的垂直平分线的方程;
(2)求线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在平面直角坐标系中,A(4,0)、B(-4,0),且$\frac{sinA+sinB}{sinC}$=$\frac{5}{4}$,则△ABC的顶点C的轨迹方程为$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{9}$=1(y≠0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.求下列函数的定义域:
(1)y=$\frac{x-1}{\sqrt{-{x}^{2}+x+2}}$;
(2)y=$\frac{1}{|x-1|}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.等差数列{an}的首项a1>0,设其前n项和为Sn,且S5=S12,则当n为何值时,Sn有最大值?

查看答案和解析>>

同步练习册答案