精英家教网 > 高中数学 > 题目详情
若数列{an}满足an=qn(q>0,n∈N*)则以下命题中正确的是
①②③④
①②③④

①{a2n}是等比数列
{
1an
}
是等比数列
③lgan是等差数列
④{lgan2}是等差数列.
分析:利用等差数列和等比数列的定义分别进行判断即可.
解答:解:因为q>0,所以数列an=qn(q>0,n∈N*)为等比数列,公比为q.
①则a2n=q2n=(q2)n,为等比为q2 的等比数列,所以①正确.
1
an
=
1
qn
=(
1
q
)
n
,所以为等比数列,公比为
1
q
.所以②正确.
③因为lgan=lgqn=nlgq,所以lgan是等差数列,公差为lgq,所以③正确.
④因为lg
a
2
n
=2lgan=2lgqn=(2lg?q)?n
,所以{lgan2}是等差数列.公差为2lgq,所以④正确.
故答案为:①②③④.
点评:本题主要考查等差数列和等比数列的判断,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列关于数列的命题中,正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•烟台二模)若数列{an}满足an+12-
a
2
n
=d
(d为正常数,n∈N+),则称{an}为“等方差数列”.甲:数列{an}为等方差数列;乙:数列{an}为等差数列,则甲是乙的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•三明模拟)若数列{an}满足a≤an≤b,其中a、b是常数,则称数列{an}为有界数列,a是数列{an}的下界,b是数列{an}的上界.现要在区间[-1,2)中取出20个数构成有界数列{bn},并使数列{bn}有且仅有两项差的绝对值小于
1
m
,那么正数m的最小取值是(  )

查看答案和解析>>

科目:高中数学 来源:2013年福建省三明市高三质量检查数学试卷(解析版) 题型:选择题

若数列{an}满足a≤an≤b,其中a、b是常数,则称数列{an}为有界数列,a是数列{an}的下界,b是数列{an}的上界.现要在区间[-1,2)中取出20个数构成有界数列{bn},并使数列{bn}有且仅有两项差的绝对值小于,那么正数m的最小取值是( )
A.5
B.
C.7
D.

查看答案和解析>>

科目:高中数学 来源:2012年福建省三明市普通高中毕业班质量检查数学试卷(理科)(解析版) 题型:选择题

若数列{an}满足a≤an≤b,其中a、b是常数,则称数列{an}为有界数列,a是数列{an}的下界,b是数列{an}的上界.现要在区间[-1,2)中取出20个数构成有界数列{bn},并使数列{bn}有且仅有两项差的绝对值小于,那么正数m的最小取值是( )
A.5
B.
C.7
D.

查看答案和解析>>

同步练习册答案