精英家教网 > 高中数学 > 题目详情
若函数f(x)=
a•2x-a-12x-1
为奇函数.
(1)求函数的定义域;          
(2)确定实数a的值;
(3)判断函数f(x)在区间(0,+∞)上的单调性并用定义证明.
分析:(1)利用函数的成立的条件,求函数的定义域.
(2)利用函数是奇函数,建立方程f(-x)=-f(x),然后求a.
(3)利用函数单调性的定义进行证明.
解答:解:(1)要使函数有意义,则2x-1≠0,解得x≠0,即函数的定义域为{x|x≠0}.
(2)∵函数是奇函数,
∴f(-x)=-f(x),
a?2-x-a-1
2-x-1
=-
a?2x-a-1
2x-1

a-(a+1)2x
1-2x
=
a?2x-a-1
1-2x
,整理得a-(a+1)2x=a?2x-(a+1)恒成立,
∴a=-(a+1),解得a=-
1
2

(3)∵a=-
1
2

∴f(x)=
-
1
2
?2x-
1
2
2x-1
=-
1
2
?
2x+1
2x-1
=-
1
2
?
2x-1+2
2x-1
=-
1
2
-
2
2x-1

函数在(0,+∞)上是增函数.
证明:在定义域上任设两个变量x1,x2,设x1<x2
f(x1)-f(x2)=-
1
2
?
2x+1
2x-1
=
2
2x2-1
-
2
2x1-1
=
2(2x1-2x2)
(2x1-1)(2x2-1)

∵0<x1<x2
2x1-2x2<02x2-1>02x1-2x2<0
∴f(x1)-f(x2)<0,
即f(x1)<f(x2),
∴f(x)在区间(0,+∞)上的单调递增.
点评:本题主要考查函数奇偶性的应用,与指数函数有关的定义域,以及函数单调性的判断和证明,要求熟练掌握函数单调性的定义及证明过程.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出下列四个命题:
①若函数f(x)=a(x3-x)在区间(-
3
3
3
3
)为减函数,则a>0

②函数f(x)=lg(ax+1)的定义域是{x|x>-
1
a
}

③当x>0且x≠1时,有lnx+
1
lnx
≥2

④若M是圆(x-5)2+(y+2)2=34上的任意一点,则点M关于直线y=ax-5a-2的对称点M′也在该圆上.
所有正确命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=
(a-2)xx≥2
(
1
2
)x-1
x<2
是R上的单调减函数,则实数a的取值范围是(  )
A、(-∞,2)
B、(-∞,
13
8
]
C、(0,2)
D、[
13
8
,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=(a-
1
ex+1
)x
是偶函数,则f(ln2)=
1
6
ln2
1
6
ln2

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数y=f(x),如果存在区间[m,n],同时满足下列条件:①f(x)在[m,n]内是单调的;②当定义域是[m,n]时,f(x)的值域也是[m,n],则称[m,n]是该函数的“和谐区间”.若函数f(x)=
a+1
a
-
1
x
(a>0)
有“和谐区间”,则函数g(x)=
1
3
x3+
1
2
ax2+(a-1)x+5
的极值点x1,x2满足(  )
A、x1∈(0,1),x2∈(1,+∞)
B、x1∈(-∞,0),x2∈(0,1)
C、x1∈(-∞,0),x2∈(-∞,0)
D、x1∈(1,+∞),x2∈(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=
(a-2)x+3a-2,0≤x≤2
ax,x>2
是一个单调递增函数,则实数a的取值范围(  )
A、(1,2]∪[3,+∞)
B、(1,2]
C、(0,2]∪[3,+∞)
D、[3,+∞)

查看答案和解析>>

同步练习册答案