【题目】已知抛物线
的方程为
,其焦点为
,
为过焦点
的抛物线
的弦,过
分别作抛物线的切线
,
,设
,
相交于点
.
(1)求
的值;
(2)如果圆
的方程为
,且点
在圆
内部,设直线
与
相交于
,
两点,求
的最小值.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,已知曲线
的参数方程为
(
为参数),以坐标原点
为极点,以
轴的正半轴为极轴,建立极坐标系,曲线
的极坐标方程为
.
(1)设点
分别为曲线
与曲线
上的任意一点,求
的最大值;
(2)设直线
(
为参数)与曲线
交于
两点,且
,求直线
的普通方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的焦点分别为
,
,椭圆
的离心率为
,且经过点
,经过
,
作平行直线
,
,交椭圆
于两点
,
和两点
,
.
(1)求
的方程;
(2)求四边形
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,以
为极点,
轴的非负半轴为极轴,建立极坐标系,曲线
的极坐标方程为
,直线
的参数方程为
为参数
,直线
与曲线
分别交于
两点.
(1)若点
的极坐标为
,求
的值;
(2)求曲线
的内接矩形周长的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义向量的外积:
叫做向量
与
的外积,它是一个向量,满足下列两个条件:
(1)
,
,且
,
和
构成右手系(即三个向量两两垂直,且三个向量的方向依次与拇指、食指、中指的指向一致);
(2)
的模
(
表示向量
、
的夹角);
如图,在正方体
,有以下四个结论:
![]()
①
与
方向相反;
②
;
③
与正方体表面积的数值相等;
④
与正方体体积的数值相等.
这四个结论中,正确的结论有( )个
A.4B.3C.2D.1
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(2017高考新课标Ⅲ,理19)如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.
![]()
(1)证明:平面ACD⊥平面ABC;
(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角D–AE–C的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
=
.
(1)若不等式
的解集为
,求不等式
的解集;
(2)若对于任意的
,不等式
恒成立,求实数
的取值范围;
(3)已知
,若方程
在
有解,求实数
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com