精英家教网 > 高中数学 > 题目详情
设等比数列{an}k前n项和为Sn,若S5=10,S10=50,则S20等于(  )
A.90B.250C.210D.850
由题意数列的公比q≠如,设首项为a,则
∵S5=如0,S如0=50,
a(如-q5)
如-q
=如0,
a(如-q如0)
如-q
=50
∴两式相除可0如+q5=5,∴q5=4
a
如-q
=-
如0
3

∴S20=
a(如-q20)
如-q
=-
如0
3
•(如-256)
=850
故选D.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设等比数列{an}的前n项和为Sn,等差数列bn的前n项和为Tn,已知Sn=2n+1-c+1(其中c为常数),b1=1,b2=c.
(1)求常数c的值及数列{an},bn的通项公式an和bn
(2)设dn=
bn
an
,设数列dn的前n项和为Dn,若不等式m≤Dn<k对于任意的n∈N*恒成立,求实数m的最大值与整数k的最小值.
(3)试比较
1
T1
+
1
T2
+
1
T3
+…+
1
Tn
与2的大小关系,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

设等比数列{an}的公比q≠1,Sn表示数列{an}的前n项的和,Tn表示数列{an}的前n项的乘积,Tn(k)表示{an}的前n项中除去第k项后剩余的n-1项的乘积,即Tn(k)=
Tn
ak
(n,k∈N+,k≤n),则数列
SnTn
Tn(1)+Tn(2)+…+Tn(n)
的前n项的和是
a12
2-q-q-1
(n+nq-
q-qn+1+1-q1-n
1-q
a12
2-q-q-1
(n+nq-
q-qn+1+1-q1-n
1-q
(用a1和q表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)等比数列{an}中,对任意n≥2,n∈N时都有an-1,an+1,an成等差,求公比q的值;
(2)设Sn是等比数列{an}的前n项和,当S3,S9,S6成等差时,是否有a2,a8,a5一定也成等差数列?说明理由;
(3)设等比数列{an}的公比为q,前n项和为Sn,是否存在正整数k,使Sm-k,Sm+k,Sm成等差且an-k,an+k,an也成等差,若存在,求出k与q满足的关系;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设等比数列{an}的首项为a1=2,公比为q(q为正整数),且满足3a3是8a1与a5的等差中项;等差数列{bn}满足2n2-(t+bn)n+
32
bn
=0(t∈R,n∈N*).
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ) 若对任意n∈N*,有anbn+1+λanan+1≥bnan+1成立,求实数λ的取值范围;
(Ⅲ)对每个正整数k,在ak和a k+1之间插入bk个2,得到一个新数列{cn}.设Tn是数列{cn}的前n项和,试求满足Tm=2cm+1的所有正整数m.

查看答案和解析>>

同步练习册答案