精英家教网 > 高中数学 > 题目详情
5.若{x∈R|x2+2(a+1)x+a2-1=0}⊆{x|x2=0},的实数a的取值范围是a≤-1.

分析 集合A={x|x2=0}={0},B={x∈R|x2+2(a+1)x+a2-1=0},由B⊆A,利用分类讨论思想分析可得答案.

解答 解:集合A={x|x2=0}={0},B={x∈R|x2+2(a+1)x+a2-1=0}
(1)B=∅时,x2+2(a+1)x+a2-1=0没有实根,△<0,得a<-1;
(2)B≠∅时,且B⊆A,则B={0}即方程x2+2(a+1)x+a2-1=0有两个相等的实根,
∴△=0,a=-1,满足条件;
∴实数a的取值范围是a≤-1.
故答案为:a≤-1.

点评 本题考查集合的包含关系,考查分类讨论的数学思想,正确分类讨论是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.在空间直角坐标系中有单位正方体ABCD-A′B′C′D′,E,F分别是棱C′D′和B′C′的中点,试求:
(1)AF与平面BEB′所成角的余弦值;
(2)求点A到平面BEB′的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.写出下列数列的一个通项公式:
(1)-1,7,-13,19,…;
(2)$\frac{1}{2}$,$\frac{3}{4}$,$\frac{7}{8}$,$\frac{15}{16}$,$\frac{31}{32}$,…
(3)7,77,777,7777,…;
(4)-1,$\frac{3}{2}$,-$\frac{1}{3}$,$\frac{3}{4}$,-$\frac{1}{5}$.$\frac{3}{6}$,…

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.判断幂函数f(x)=${x}^{\frac{1}{2}}$的奇偶性,并画出函数图象.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设不等式2-x≥0的解集为A,集合B={x|x<a,a∈R},若B?A,则实数a的取值范围为a≤2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设集合A的元素都是正整数,满足:①A的元素个数不小于3;②若a∈A,b∈A,1<a<b,则1+ab∈A.③若a∈A,则a的所有因子都属于A.回答下面的问题:
(1)证明:1,2,3,4,5,均为A中元素;
(2)问:2011是否属于A.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.综合应用抛物线和双曲线的光学性质,可以设计制造反射式天文望远镜,这种望远镜的特点是,镜筒可以很短而观察天体运动又很清楚.例如,某天文仪器厂设计制造的一种镜筒直径为0.6m,长为2m的反射式望远镜,其光学系统的原理如图(中心截口示意图)所示.其中,一个反射镜PO1Q弧所在的曲线为抛物线,另一个反射镜MO2N弧所在的曲线为双曲线的一个分支.已知F1,F2是双曲线的两个焦点,其中F2同时又是抛物线的焦点,试根据图示尺寸(单位:mm),分别求抛物线和双曲线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下面使用类比推理正确的是(  )
A.直线a∥b,b∥c,则a∥c,类推出:向量$\overrightarrow a∥\overrightarrow b,\overrightarrow b∥\overrightarrow c$,则$\overrightarrow a∥\overrightarrow c$
B.同一平面内,直线a,b,c,若a⊥c,b⊥c,则a∥b.类推出:空间中,直线a,b,c,若a⊥c,b⊥c,则a∥b
C.实数a,b,若方程x2+ax+b=0有实数根,则a2≥4b.类推出:复数a,b,若方程x2+ax+b=0有实数根,则a2≥4b
D.以点(0,0)为圆心,r为半径的圆的方程为x2+y2=r2.类推出:以点(0,0,0)为球心,r为半径的球的方程为x2+y2+z2=r2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在等比数列{an}中,a5a7=2,a2+a10=3,则$\frac{{a}_{12}}{{a}_{4}}$=$\frac{1}{2}$或2.

查看答案和解析>>

同步练习册答案