精英家教网 > 高中数学 > 题目详情
9.函数f(x)=cos2x+$\sqrt{3}$sin2x,下列结论正确的是(  )
A.函数f(x)图象的一个对称中心为($\frac{π}{12}$,0)
B.函数f(x)图象的一个对称轴为x=-$\frac{π}{6}$
C.函数f(x)图象的一个减区间为(-1,$\frac{1}{2}$)
D.函数f(x)在[-$\frac{π}{3}$,$\frac{π}{12}$]上的最大值为$\sqrt{3}$

分析 函数解析式提取2变形后,利用两角和与差的正弦函数公式化为一个角的正弦函数,利用正弦函数的图象和性质即可逐一判断各个选项得解.

解答 解:f(x)=$\sqrt{3}$sin2x+cos2x=2($\frac{\sqrt{3}}{2}$sin2x+$\frac{1}{2}$cos2x)=2sin(2x+$\frac{π}{6}$),
由2x+$\frac{π}{6}$=kπ,k∈Z,可解得:x=$\frac{kπ}{2}$-$\frac{π}{12}$,k∈Z,故A不正确;
当x=-$\frac{π}{6}$时,f(x)=2sin(2×-$\frac{π}{6}$+$\frac{π}{6}$)=-1,故B不正确;
由2kπ+$\frac{π}{2}$≤2x+$\frac{π}{6}$≤2kπ+$\frac{3π}{2}$,k∈Z,可解得单调递减区间为:[kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$],k∈Z,可得C不正确;
当x∈[-$\frac{π}{3}$,$\frac{π}{12}$]时,2x+$\frac{π}{6}$∈[-$\frac{π}{2}$,$\frac{π}{3}$],f(x)=2sin(2x+$\frac{π}{6}$)∈[-2,$\sqrt{3}$],故D正确.
故选:D.

点评 此题考查了两角和与差的正弦函数公式,以及周期公式的应用,考查了正弦函数的图象和性质,将函数解析式化为一个角的正弦函数是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知数列{an+1-2an}(n∈N*)是公比为2的等比数列,其中a1=1,a2=4.
(Ⅰ)证明:数列{$\frac{{a}_{n}}{{2}^{n}}$} 是等差数列;
(Ⅱ)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知a=ln$\frac{1}{2}$,b=3lg2,c=2${\;}^{-\frac{1}{2}}$,则a,b,c的大小关系为(  )
A.a<b<cB.a<c<bC.b<a<cD.b<c<a

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)是定义在R上的偶函数,若函数g(x)是奇函数,且g(x)=f(x-1),g(3)=2008,则f(2012)=-2008.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知下表为定义域为R的函数f(x)=ax3+cx+d若干自变量取值及其对应函数值,为便于研究,相关函数值非整数值时,取值精确到0.01.
x4.251.57-0.61-0.5900.42-0.350.560.263.27
y-226.05-10.040.070.0300.20-0.220.030.21-101.63
根据表中数据解答下列问题:
(1)函数y=f(x)在区间[0.55,0.6]上是否存在零点,写出判断并说明理由;
(2)证明:函数y=f(x)在区间[0.41,+∞)单调递减.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=|x+m|,g(x)=|x-2m|.
(1)若不等式f(1)+g(1)>5成立,求实数m的取值范围;
(2)求函数f(x+m)+g($\frac{2}{x}$)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知y=$\frac{{e}^{x}-{e}^{-x}}{{e}^{x}+{e}^{-x}}$(y<1),则用含y的代数式来表示的x=(  )
A.$\frac{1+y}{1-y}$B.ln$\frac{1+y}{1-y}$C.$\frac{1}{2}$ln$\frac{1+y}{1-y}$D.$\frac{1}{2}$ln$\frac{1-y}{1+y}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在数列{an}中,an=an-1+n(n≥2),a1=1,则a3等于4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知全集U=R,集合 A={y|y=$\frac{4}{x}$,x>0},B={y|y=2x,x<1}则A∩(∁RB)=(  )
A.(0,2)B.[2,+∞)C.(-∞,0]D.(2,+∞)

查看答案和解析>>

同步练习册答案