精英家教网 > 高中数学 > 题目详情
19.已知全集U=R,集合 A={y|y=$\frac{4}{x}$,x>0},B={y|y=2x,x<1}则A∩(∁RB)=(  )
A.(0,2)B.[2,+∞)C.(-∞,0]D.(2,+∞)

分析 根据求出集合A,B,结合集合的交集及补集运算定义,可得答案.

解答 解:∵集合 A={y|y=$\frac{4}{x}$,x>0}=(0,+∞),
B={y|y=2x,x<1}=(0,2),
∴∁RB=(-∞,0]∪[2,+∞),
∴A∩(∁RB)=[2,+∞),
故选:B

点评 本题考查的知识点是集合的交集,并集,补集运算,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.函数f(x)=cos2x+$\sqrt{3}$sin2x,下列结论正确的是(  )
A.函数f(x)图象的一个对称中心为($\frac{π}{12}$,0)
B.函数f(x)图象的一个对称轴为x=-$\frac{π}{6}$
C.函数f(x)图象的一个减区间为(-1,$\frac{1}{2}$)
D.函数f(x)在[-$\frac{π}{3}$,$\frac{π}{12}$]上的最大值为$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.数列{an}的前n项和Sn=3n-2,那么a10=(  )
A.3B.28C.5D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.我国是水资源匮乏的国家为节约用水,某市打算出台一项水费政策措施,规定:每一季度每人用水量不超过5吨时,每吨水费收基本价1元,若超过5吨而不超过6吨时,超过部分水费加收200%;若超过6吨而不超过7吨时,超过部分的水费加收400%,如果某人本季度实际用水量为x吨,应交水费为f(x).
(1)试求出函数f(x)的解析式.
(2)作出函数f(x)的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知α,β均为锐角,且cos(α+β)=sin(α-β),则角α的值为(  )
A.$\frac{π}{4}$B.-$\frac{π}{4}$C.0D.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.分解因式:9x2-y2-4y-4=(3x+y+2)(3x-y-2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.矩阵A=$[\begin{array}{l}{3}&{3}\\{2}&{4}\end{array}]$ 的逆矩阵是$[\begin{array}{l}{\frac{2}{3}}&{-\frac{1}{2}}\\{-\frac{1}{3}}&{\frac{1}{2}}\end{array}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.以下四个命题中正确的命题的序号是(1)(3)(4)
(1)已知随机变量X~N(μ,σ2),σ越小,则X集中在μ周围的概率越大.
(2)对分类变量X与Y,它们的随机变量K2的观测值k越小,则“X与Y相关”可信程度越大.
(3)预报变量的值与解释变量和随机误差的总效应有关.
(4)在回归直线方程$\stackrel{∧}{y}$=0.1x+10中,当解释变量x每增加一个单位时,预报变量$\stackrel{∧}{y}$增加0.1个单位.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某市区鼓励居民用电,以减少燃气或燃煤对空气造成的污染,并采用分段费的方法计算电费,规定:每月用电不超过100度时,按每度电0.57元计费,每月用电量超过100度时,其中100度仍用原标准计费,超出的部分每度电按0.5元计费,
(1)设每月用电x度时,应缴纳电费y元,写出y与x的函数关系式;
(2)假定某居民第一季度缴纳电费情况如下表:
请你计算,第一季度该户居民共用多少度电?
月份一月二月三月四月
金额76元63元45.6元184.6元

查看答案和解析>>

同步练习册答案