分析 由矩阵A=$[\begin{array}{l}{3}&{3}\\{2}&{4}\end{array}]$,先求出矩阵A的行列式和矩阵A的伴随矩阵,由此利用公式${A}^{-1}=\frac{1}{|A|}•{A}^{*}$能求出矩阵A的逆矩阵.
解答 解:∵A=$[\begin{array}{l}{3}&{3}\\{2}&{4}\end{array}]$,
∴|A|=$|\begin{array}{l}{3}&{3}\\{2}&{4}\end{array}|$=12-6=6,${A}^{*}=[\begin{array}{l}{4}&{-3}\\{-2}&{3}\end{array}]$,
∴${A}^{-1}=\frac{1}{|A|}•{A}^{*}$=$\frac{1}{6}×$$[\begin{array}{l}{4}&{-3}\\{-2}&{3}\end{array}]$=$[\begin{array}{l}{\frac{2}{3}}&{-\frac{1}{2}}\\{-\frac{1}{3}}&{\frac{1}{2}}\end{array}]$.
故答案为:$[\begin{array}{l}{\frac{2}{3}}&{-\frac{1}{2}}\\{-\frac{1}{3}}&{\frac{1}{2}}\end{array}]$.
点评 本题考查矩阵的逆矩阵的求法,是基础题,解题时要注意公式${A}^{-1}=\frac{1}{|A|}•{A}^{*}$的合理运用.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1+y}{1-y}$ | B. | ln$\frac{1+y}{1-y}$ | C. | $\frac{1}{2}$ln$\frac{1+y}{1-y}$ | D. | $\frac{1}{2}$ln$\frac{1-y}{1+y}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,2) | B. | [2,+∞) | C. | (-∞,0] | D. | (2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2$\sqrt{2}$ | B. | 3$\sqrt{3}$ | C. | 4$\sqrt{3}$ | D. | 4$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com