精英家教网 > 高中数学 > 题目详情
我们把离心率为黄金比的椭圆称为“优美椭圆”.设 为“优美椭圆”,F、A分别是左焦点和右顶点,B是短轴的一个端点,则 (  )
A.60° B.75°C.90°D.120°
C

试题分析:由已知=,2c2=(3-)a2,所以
=
从而+=+==
点评:中档题,注意到选项均为角度值,所以应从研究三角形ABF的边的关系入手。本题对计算能力要求较高。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知椭圆)的离心率为,过右焦点且斜率为1的直线交椭圆两点,为弦的中点。
(1)求直线为坐标原点)的斜率
(2)设椭圆上任意一点,且,求的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,的两个顶点的坐标分别是(-1,0),(1,0),点的重心,轴上一点满足,且.
(1)求的顶点的轨迹的方程;
(2)不过点的直线与轨迹交于不同的两点,当时,求的关系,并证明直线过定点.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)已知函数(其中为常数)的图像经过点A、B是函数图像上的点,正半轴上的点.
(1) 求的解析式;
(2) 设为坐标原点,是一系列正三角形,记它们的边长是,求数列的通项公式;
(3) 在(2)的条件下,数列满足,记的前项和为,证明:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)设椭圆E: (a,b>0)过M(2,) ,N(,1)两点,O为坐标原点.
(Ⅰ)求椭圆E的方程;
(Ⅱ)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交A,B且?若存在,写出该圆的方程,若不存在说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

我国发射的“神舟七号”飞船的运行轨道是以地球的中心为一个焦点的椭圆,近地点A距地面为千米,远地点B距地面为千米,地球半径为千米,则飞船运行轨道的短轴长为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
已知椭圆的离心率为,短轴一个端点到右焦点的距离为.
(1)求椭圆的方程;
(2)设直线与椭圆交于两点,坐标原点到直线的距离为,求
面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆的右焦点为点在椭圆上,以点为圆心的圆与轴相切,且同时与轴相切于椭圆的右焦点,则椭圆的离心率为         

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

双曲线的实轴长、虚轴长与焦距的和为8,则半焦距的取值范围是        (答案用区间表示)

查看答案和解析>>

同步练习册答案