精英家教网 > 高中数学 > 题目详情
在平面直角坐标系中,的两个顶点的坐标分别是(-1,0),(1,0),点的重心,轴上一点满足,且.
(1)求的顶点的轨迹的方程;
(2)不过点的直线与轨迹交于不同的两点,当时,求的关系,并证明直线过定点.
(1)  (2) ,直线过定点

试题分析:(1)设点坐标为
因为的重心,故点坐标为.
由点轴上且知,点的坐标为,                   ……2分          
因为,所以,即.
的顶点的轨迹的方程是.                  ……4分
(2)设直线的两交点为.
消去
,
,.                                     ……8分
因为,所以,

整理得.解得.                           ……10分
①当=,直线过点(-1,0)不合题意舍去。
②当时,=,直线过点.
综上所述,直线过定点.                                   ……12分
点评:求曲线方程时,不要忘记验证是否有限制条件;解决直线与圆锥曲线的位置关系时,一般离不开直线方程与圆锥曲线方程联立方程组,此时不要忘记验证判别式大于零.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
如图,椭圆长轴端点为为椭圆中心,为椭圆的右焦点,
,.

(1)求椭圆的标准方程;
(2)记椭圆的上顶点为,直线交椭圆于两点,问:是否存在直线,使点恰为的垂心?若存在,求出直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知椭圆的中心在坐标原点O,长轴长为2,离心率e=,过右焦点F的直线l交椭圆于P、Q两点.
(Ⅰ)求椭圆的方程;
(Ⅱ)若OP、OQ为邻边的平行四边形是矩形,求满足该条件的直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过点P(0,-2)的双曲线C的一个焦点与抛物线的焦点相同,则双曲线C的标准方程是(   )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知椭圆的中心在原点,焦点在轴上,长轴长是短轴长的2倍且经过点M(2,1),平行于OM的直线轴上的截距为交椭圆于A、B两个不同点.
(1)求椭圆的方程;
(2)求m的取值范围;
(3)求证直线MA、MB与轴始终围成一个等腰三角形.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知为直角三角形,三边长分别为,其中斜边AB=,若点在直线上运动,则的最小值为              

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知双曲线的一条渐近线经过点,则该双曲线的离心率为___________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

我们把离心率为黄金比的椭圆称为“优美椭圆”.设 为“优美椭圆”,F、A分别是左焦点和右顶点,B是短轴的一个端点,则 (  )
A.60° B.75°C.90°D.120°

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(13分) 如图,已知椭圆的两个焦点分别为,斜率为k的直线l过左焦点F1且与椭圆的交点为A,B与y轴交点为C,又B为线段CF1的中点,若,求椭圆离心率e的取值范围。

查看答案和解析>>

同步练习册答案