精英家教网 > 高中数学 > 题目详情
对于函数f(x)=(2x-x2)ex
(1)(-
2
2
)
是f(x)的单调递减区间;
(2)f(-
2
)
是f(x)的极小值,f(
2
)
是f(x)的极大值;
(3)f(x)有最大值,没有最小值;
(4)f(x)没有最大值,也没有最小值.
其中判断正确的是______.
f′(x)=ex(2-x2),由f′(x)=0得x=±
2

由f′(x)<0得x>
2
或x<-
2

由f′(x)>0得-
2
<x<
2

∴f(x)的单调减区间为(-∞,-
2
),(
2
,+∞),单调增区间为(-
2
2
),故(1)不正确;
∴f(x)的极大值为f(
2
),极小值为f(-
2
),故(2)正确.
∵x<-
2
时,f(x)<0恒成立,在(-
2
2
)单调递增,在(
2
,+∞)上单调递减,
∴当x=
2
时取极大值,也是最大值,而当x→+∞时,f(x)→-∞
∴f(x)无最小值,但有最大值f(
2
)则(3)正确.
从而f(x)没有最大值,也没有最小值,则(4)不正确.
故答案为:(2)(3)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于函数f(x)定义域中任意的x1,x2(x1≠x2),有如下结论:
①f(x1+x2)=f(x1)f(x2);②f(x1•x2)=f(x1)+f(x2);
③(x1-x2)[f(x1)-f(x2)]<0;④f(
x1+x2
2
)<
f(x1)+f(x2)
2

当f(x)=2-x时,上述结论中正确结论的序号是
 
写出全部正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x),定义域为D,若存在x0∈D使f(x0)=x0,则称(x0,x0)为f(x)的图象上的不动点. 由此,函数f(x)=
9x-5x+3
的图象上不动点的坐标为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x)定义域中任意的x1,x2(x1≠x2)有如下结论:
①f(x1+x2)=f(x1)f(x2)②f(x1)f(x2)=f(x1)+f(x2)③
f(x1)-f(x2)
x1-x2
<0

f(
x1+x2
2
)<
f(x1)+f(x2)
2
,当f(x)=log
1
2
x
时,上述结论中正确的序号是
③④
③④
(写出全部正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为函数f(x)的不动点,已知f(x)=ax2+(b+1)x+(b-1)(a≠0)
(1)当a=1,b=-2求函数f(x)的不动点;
(2)若对任意实数b,函数f(x)恒有两个相异不动点,求a的取值范围;
(3)在(2)的条件下,令g(x)=
1
x+2
+loga 
1+x
1-x
,解关于x的不等式g[x(x-
1
2
)]<
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x)=x3cos3(x+
π
6
),下列说法正确的是(  )

查看答案和解析>>

同步练习册答案