精英家教网 > 高中数学 > 题目详情
(2011•浙江模拟)已知函数f(x)=
-x3+x2,x<1
alnx,     x≥1.

(Ⅰ)求f(x)在[-1,e](e为自然对数的底数)上的最大值;
(Ⅱ)对任意给定的正实数a,曲线y=f(x)上是否存在两点P,Q,使得POQ是以O为直角顶点的直角三角形,且此三角形斜边中点在y轴上?
分析:(Ⅰ)根据分段函数,分类讨论求最值,利用导数确定函数的单调性,从而可得最值;
(Ⅱ)假设存在,设出P(t,f(t))(t>0),利用
OP
OQ
=0
,可得-t2+f(t)•(t3+t2)=0,是否存在点P,Q等价于方程是否有解,分类讨论,即可得到结论.
解答:解:(Ⅰ)因为f(x)=
-x3+x2,x<1
alnx,     x≥1.

①当-1≤x≤1时,f'(x)=-x(3x-2),解f'(x)>0得到0<x<
2
3
;解f'(x)<0得到-1<x<0或
2
3
<x<1
.所以f(x)在(-1,0)和(
2
3
,1)
上单调递减,在(0,
2
3
)
上单调递增,
从而f(x)在x=
2
3
处取得极大值f(
2
3
)=
4
27
.…(3分),
又f(-1)=2,f(1)=0,所以f(x)在[-1,1)上的最大值为2.…(4分)
②当1≤x≤e时,f(x)=alnx,当a≤0时,f(x)≤0;当a>0时,f(x)在[1,e]上单调递增,
所以f(x)在[1,e]上的最大值为a.
所以当a≥2时,f(x)在[-1,e]上的最大值为a;当a<2时,f(x)在[-1,e]上的最大值为2.…(8分)
(Ⅱ)假设曲线y=f(x)上存在两点P,Q,使得POQ是以O为直角顶点的直角三角形,则P,Q只能在y轴的两侧,不妨设P(t,f(t))(t>0),则Q(-t,t3+t2),且t≠1.…(9分)
因为△POQ是以O为直角顶点的直角三角形,所以
OP
OQ
=0

即:-t2+f(t)•(t3+t2)=0(1)…(10分)   
是否存在点P,Q等价于方程(1)是否有解.
若0<t<1,则f(t)=-t3+t2,代入方程(1)得:t4-t2+1=0,此方程无实数解.…(11分)
若t>1,则f(t)=alnt,代入方程(1)得到:
1
a
=(t+1)lnt
,…(12分)
设h(x)=(x+1)lnx(x≥1),则h′(x)=lnx+
1
x
>0
在[1,+∞)上恒成立.
所以h(x)在[1,+∞)上单调递增,从而h(x)≥h(1)=0,
所以当a>0时,方程
1
a
=(t+1)lnt
有解,即方程(1)有解.…(14分)
所以,对任意给定的正实数a,曲线y=f(x)上是否存在两点P,Q,使得POQ是以O为直角顶点的直角三角形,且此三角形斜边中点在y轴上.…(15分)
点评:本题考查分段函数,考查函数的单调性与最值,考查存在性问题,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•浙江模拟)已知△ABC中,AB=AC=4,BC=4
3
,点D为BC边的中点,点P为BC边所在直线上的一个动点,则
AP
AD
满足(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•浙江模拟)数列{an}满足an+1+an=4n-3(n∈N*
(Ⅰ)若{an}是等差数列,求其通项公式;
(Ⅱ)若{an}满足a1=2,Sn为{an}的前n项和,求S2n+1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•浙江模拟)已知A、B是两个不同的点,m、n是两条不重合的直线,α、β是两个不重合的平面,则①m?α,A∈m⇒A∈α;②m∩n=A,A∈α,B∈m⇒B∈α;③m?α,n?β,m∥n⇒α∥β;④m?α,m⊥β⇒α⊥β.其中真命题为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•浙江模拟)已知点F是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的左焦点,点E是该双曲线的右顶点,过F且垂直于x轴的直线与双曲线交于A,B两点,若△ABE是直角三角形,则该双曲线的离心率e为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•浙江模拟)将A,B,C,D,E五种不同的文件放入编号依次为1,2,3,4,5,6,7的七个抽屉内,每个抽屉至多放一种文件,若文件A,B必须放入相邻的抽屉内,文件C,D也必须放在相邻的抽屉内,则文件放入抽屉内的满足条件的所有不同的方法有(  )

查看答案和解析>>

同步练习册答案