精英家教网 > 高中数学 > 题目详情
(2012•眉山一模)设函数f(x)对其定义域内的任意实数x1x2都有f(
x1+x2
2
)≥
f(x1)+f(x2)
2
,则称函数f(x)为上凸函数. 若函数f(x)为上凸函数,则对定义域内任意x1、x2、x3,…,xn都有f(
x1+x2+…+xn
n
)≥
f(x1)+f(x2)+…+f(xn)
n
(当x1=x2=x3=…=xn时等号成立),称此不等式为琴生不等式,现有下列命题:
①f(x)=lnx(x>0)是上凸函数;
②二次函数f(x)=ax2+bx+c(a≠0)是上凸函数的充要条件是a>0;
③f(x)是上凸函数,若A(x1,f(x1)),B(x2,f(x2))是f(x)图象上任意两点,点C在线段AB上,且
AC
CB
,则f(
x1x2
1+λ
)≥
f(x1)+λf(x2)
1+λ

④设A,B,C是一个三角形的三个内角,则sinA+sinB+sinC的最大值是
3
3
2

其中,正确命题的序号是
①③④
①③④
(写出所有你认为正确命题的序号).
分析:作图可知①正确,②不正确.对于③,如图,因为f(x)上凸函数,则点C在点D的下方,点C的纵坐标为
f(x1)+λf(x2)
1+λ
,点D的坐标为(
x1x2
1+λ
,f(
x1x2
1+λ
))
,故f(
x1x2
1+λ
)
f(
x1x2
1+λ
)
.对于④,因为f(x)=sinx在(0,
π
2
)
上是凸函数,由琴生不等式知
3
2
sinA+sinB+sinC
3
解答:解:作图可知①正确,②不正确.
对于③,如图,因为f(x)上凸函数,则点C在点D的下方,点C的纵坐标为
f(x1)+λf(x2)
1+λ

点D的坐标为(
x1x2
1+λ
,f(
x1x2
1+λ
))

于是得f(
x1x2
1+λ
)
f(
x1x2
1+λ
)
,即③正确.
对于④,因为f(x)=sinx在(0,
π
2
)
上是凸函数,
由琴生不等式知sin
A+B+C
3
sinA+sinB+sinC
3

3
2
sinA+sinB+sinC
3

所以sinA+sinB+sinC≤
3
3
2

当A=B=C时,取④正确.
综上所述,正确命题是①③④.
点评:本题考查命题真假的判断与应用,解题时要认真审题,注意数形结合思想的灵活运用,挖掘题设中的隐含条件,合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•眉山一模)不等式
2xx-3
<1
的解集是
{x|-3<x<3}
{x|-3<x<3}

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•眉山一模)在对我市普通高中学生某项身体素质的测试中.测量结果ξ服从正态分布N(1,σ2)(σ>0),若ξ在(0,2)内取值的概率为0.8,则ξ在(0,1)内取值的概率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•眉山一模)在地球北纬45°圈上有A、B两点,点A在西经l0°,点B在东经80°,设地球半径为R,则A、B两点的球面距离为
πR
3
πR
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•眉山一模)已知正项数列{an}满足a1=1,
a
2
n+1
-
a
2
n
-2an+1-2an=0(n∈N*)

(Ⅰ)求证:数列{an}是等差数列;
(Ⅱ)若Cn+1-Cn=an+1,且C1=1,求{Cn}的通项公式;
(Ⅲ)设bn=
an+1
2n
Tn=b1+b2+b3+…+bn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•眉山一模)函数f(x)=ax3-6ax2+3bx+b,其图象在x=2处的切线方程为3x+y-11=0.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)若关于x的方程f(x)-m=0在[
12
,4]
上恰有两个不等实根,求实数m的取值范围;
(Ⅲ)函数y=f(x)图象是否存在对称中心?若存在,求出对称中以后坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案