精英家教网 > 高中数学 > 题目详情
(2013•资阳二模)已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)经过(1,1)与(
6
2
3
2
)两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过原点的直线l与椭圆C交于A、B两点,椭圆C上一点M满足|MA|=|MB|.求证:
1
|OA|2
+
1
|OB|2
+
2
|OM|2
为定值.
分析:(I)把(1,1)与(
6
2
3
2
)两点代入椭圆方程解出即可.
(II)由|MA|=|MB|,知M在线段AB的垂直平分线上,由椭圆的对称性知A、B关于原点对称.
①若点A、B是椭圆的短轴顶点,则点M是椭圆的一个长轴顶点;同理,若点A、B是椭圆的长轴顶点,则点M在椭圆的一个短轴顶点;直接代入计算即可.
②若点A、B、M不是椭圆的顶点,设直线l的方程为y=kx(k≠0),则直线OM的方程为y=-
1
k
x
,设A(x1,y1),B(x2,y2),与椭圆的方程联立解出坐标,即可得到|OA|2=|OB|2=
x
2
1
+
y
2
1
=
3(1+k2)
1+2k2
,同理|OM|2=
3(1+k2)
2+k2
,代入要求的式子即可.
解答:解析(Ⅰ)将(1,1)与(
6
2
3
2
)两点代入椭圆C的方程,
1
a2
+
1
b2
=1
3
2a2
+
3
4b2
=1
解得
a2=3
b2=
3
2

∴椭圆PM2的方程为
x2
3
+
2y2
3
=1

(Ⅱ)由|MA|=|MB|,知M在线段AB的垂直平分线上,由椭圆的对称性知A、B关于原点对称.
①若点A、B是椭圆的短轴顶点,则点M是椭圆的一个长轴顶点,此时
1
|OA|2
+
1
|OB|2
+
2
|OM|2
=
1
b2
+
1
b2
+
2
a2
=2(
1
a2
+
1
b2
)=2

同理,若点A、B是椭圆的长轴顶点,则点M在椭圆的一个短轴顶点,此时
1
|OA|2
+
1
|OB|2
+
2
|OM|2
=
1
a2
+
1
a2
+
2
b2
=2(
1
a2
+
1
b2
)=2

②若点A、B、M不是椭圆的顶点,设直线l的方程为y=kx(k≠0),
则直线OM的方程为y=-
1
k
x
,设A(x1,y1),B(x2,y2),
y=kx
x2
3
+
2y2
3
=1
解得
x
2
1
=
3
1+2k2
y
2
1
=
3k2
1+2k2

|OA|2=|OB|2=
x
2
1
+
y
2
1
=
3(1+k2)
1+2k2
,同理|OM|2=
3(1+k2)
2+k2

所以
1
|OA|2
+
1
|OB|2
+
2
|OM|2
=2×
1+2k2
3(1+k2)
+
2(2+k2)
3(1+k2)
=2,
1
|OA|2
+
1
|OB|2
+
2
|OM|2
=2为定值.
点评:本小题主要考查椭圆的标准方程及其性质、直线与椭圆相交问题转化为方程联立等基础知识,考查推理论证能力、运算求解能力,考查方程思想、化归与转化思想、数形结合思想等
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•资阳二模)某部门对当地城乡居民进行了主题为“你幸福吗?”的幸福指数问卷调査,根据每份调查表得到每个调查对象的幸福指数评分值(百分制).现从收到的调查表中随机抽取20份进行统计,得到右图所示的频率分布表:
幸福指数评分值 频数 频率
[50,60] 1
(60,70] 6
(70,80]
(80,90] 3
(90,100] 2
(Ⅰ)请完成题目中的频率分布表,并补全题目中的频率分布直方图;
(Ⅱ)该部门将邀请被问卷调查的部分居民参加“幸福愿景”的座谈会.在题中抽样统计的这20人中,已知幸福指数评分值在区间(80,100]的5人中有2人被邀请参加座谈,求其中幸福指数评分值在区间(80,90]的仅有1人被邀请的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•资阳二模)如图,三棱柱ABC-A1B1C1中,AA1⊥平面ABC,D、E分别为A1B1、AA1的中点,点F在棱AB上,且AF=
14
AB

(Ⅰ)求证:EF∥平面BDC1
(Ⅱ)在棱AC上是否存在一个点G,使得平面EFG将三棱柱分割成的两部分体积之比为1:15,若存在,指出点G的位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•资阳二模)双曲线y2-4x2=64上一点P到它的一个焦点的距离等于1,则P到它的另一个焦点的距离等于为
17
17

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•资阳二模)已知全集U={1,2,3,4,5},A={1,2,3},B={3,5},则(?UA)∪B=(  )

查看答案和解析>>

同步练习册答案