精英家教网 > 高中数学 > 题目详情

对于函数f(x),?x0∈R,使f(x0)=x0,则称x0是f(x)的不动点.求证:f(x)=x2+1没有不动点.

解:根据题意,得x=x2+1,
即x2-x+1=0,
由于△=(-1)2-4=-4<0,
得x2-x+1=0无实数根,
故f(x)=x2+1没有不动点.
分析:不动点实际上就是方程f(x0)=x0的实数根.二次函数f(x)=x2+1没有不动点,是指方程x=x2+1无实根.即方程x=x2+1无实根,然后根据根的判别式△<0解答即可.
点评:本题考查了二次函数、进行简单的演绎推理等.解答该题时,借用了一元二次方程的根的判别式与根的关系这一知识点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于函数f(x)定义域中任意的x1,x2(x1≠x2),有如下结论:
①f(x1+x2)=f(x1)f(x2);②f(x1•x2)=f(x1)+f(x2);
③(x1-x2)[f(x1)-f(x2)]<0;④f(
x1+x2
2
)<
f(x1)+f(x2)
2

当f(x)=2-x时,上述结论中正确结论的序号是
 
写出全部正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x),定义域为D,若存在x0∈D使f(x0)=x0,则称(x0,x0)为f(x)的图象上的不动点. 由此,函数f(x)=
9x-5x+3
的图象上不动点的坐标为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x)定义域中任意的x1,x2(x1≠x2)有如下结论:
①f(x1+x2)=f(x1)f(x2)②f(x1)f(x2)=f(x1)+f(x2)③
f(x1)-f(x2)
x1-x2
<0

f(
x1+x2
2
)<
f(x1)+f(x2)
2
,当f(x)=log
1
2
x
时,上述结论中正确的序号是
③④
③④
(写出全部正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为函数f(x)的不动点,已知f(x)=ax2+(b+1)x+(b-1)(a≠0)
(1)当a=1,b=-2求函数f(x)的不动点;
(2)若对任意实数b,函数f(x)恒有两个相异不动点,求a的取值范围;
(3)在(2)的条件下,令g(x)=
1
x+2
+loga 
1+x
1-x
,解关于x的不等式g[x(x-
1
2
)]<
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x)=x3cos3(x+
π
6
),下列说法正确的是(  )

查看答案和解析>>

同步练习册答案