精英家教网 > 高中数学 > 题目详情
已知直线l:y=k(x-2)(k>0)与抛物线C:y2=8x交于A,B两点,F为抛物线C的焦点,若
AF
=2
FB
,则k的值是(  )
A、
1
3
B、
2
2
3
C、2
2
D、
2
4
分析:设出A,B两点的坐标,
AF
=2
FB
,求出点B的坐标,由斜率公式求出k值.
解答:解:由题意得 F(2,0),设A(
m2
8
,m),B(
n2
8
,n),m>0,n<0.
∵|AF|=2|BF|,∴
AF
=2
FB
,∴(2-
m2
8
,-m)=2(
n2
8
-2,n),
∴2-
m2
8
=2•
n2
8
-4,-m=2n,∴n=-2
2
,B( 1,-2
2
 ),
∴k=kFB=
0+2
2
2-1
=2
2

故选C.
点评:本题考查斜率公式,两个向量坐标形式的运算,利用抛物线的标准方程,以及简单性质的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知直线l:y=k(x-5)及圆C:x2+y2=16.
(1)若直线l与圆C相切,求k的值;
(2)若直线l与圆C交于A、B两点,求当k变动时,弦AB的中点的轨迹.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l:y=k(x+2
2
)与圆O:x2+y2=4相交于A、B两点,O是坐标原点,三角形ABO的面积为S.
(Ⅰ)试将S表示成的函数S(k),并求出它的定义域;
(Ⅱ)求S的最大值,并求取得最大值时k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l:y=k(x+1)与抛物线C:y2=4x.
(1)当k为何值时,直线l与抛物线C只有一个公共点.
(2)当k为何值时,直线l与抛物线C有两个不同的公共点.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l:y=k(x+2
2
)
交椭圆x2+9y2=9于A、B两点,若|AB|=2,则k的值为(  )

查看答案和解析>>

同步练习册答案