精英家教网 > 高中数学 > 题目详情
设集合A={x|x2-ax-2=0},B={x|x2+bx+c=0},且A∩B={-2},A∪B={-2,1,5},求a,b,c的值.
由题意可得-2∈A,∴4+2a-2=0,解得 a=-1.x2-ax-2=0 即 x2 +x-2=0,解得x=-2,或 x=1,∴A={-2,1}.
再由A∪B={-2,1,5},可得B={-2,5},由一元二次方程根与系数的关系可得,
5-2=-b
5×(-2)=c
,解得 
b=-3
c=-10

综上可得 a=-1,b=-3,c=-10.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设集合A={x|x2=1},B={x|x是不大于3的自然数},A⊆C,B⊆C,则集合C中元素最少有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x|x2+2x-a=0,x∈R},若A是非空集合,则实数a的取值范围是
[-1,+∞)
[-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•海淀区一模)设集合A={x|x2>x},集合B={x|x>0},则集合A∩B等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x|x2<2x},B={x|log2x>0},则A∩B=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x|x2+2x-3>0},B={x|x<3},则A∩B=(  )

查看答案和解析>>

同步练习册答案