精英家教网 > 高中数学 > 题目详情
已知f(x)=
3x-6x

(1)用单调性定义证明:f(x)在区间(0,+∞)上是增函数.
(2)函数y=f(x)在区间[1,3]上的值域为A,求函数y=4x-2x+1(x∈A)的最大值和最小值.
分析:(1)利用定义证明单调性步骤为:①取值;②作差;③变形;④判号;⑤结论.
(2)利用f(x)的单调性求出A,y=4x-2x+1=(2x2-2•2x,令t=2x,则y=t2-2t,利用二次函数性质可求其最值.
解答:(1)证明:设x1,x2∈(0,+∞),且x1<x2
f(x1)-f(x2)=
3x1-6
x1
-
3x2-6
x2
=
6(x1-x2)
x1x2

∵0<x1<x2,∴x1-x2<0,x1x2>0,∴
6(x1-x2)
x1x2
<0

∴f(x1)-f(x2)<0,即f(x1)<f(x2
∴y=f(x)在(0,+∞)上是增函数.
(2)解:由(1)y=f(x)在[1,3]上是增函数,则在区间[1,3]上
当x=1时,y=f(x)有最小值-3,当x=3时,y=f(x)有最大值1,故A=[-3,1].
y=4x-2x+1=(2x2-2•2x
令t=2x,由A=[-3,1],得t∈[
1
8
,2]

则 y=t2-2t,t∈[
1
8
,2]

当t=1,即x=0时,y有最小值-1;
当t=2,即x=1时,y有最大值0.
点评:定义法是证明函数单调性的一种基本方法,要熟练掌握其步骤,其中变形最关键,对二次函数的最值问题最好借助图象处理.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=
3x+1,x≥0
x2,x<0
,则f(-
2
)
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
3x
•sinx
,则f′(1)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
3x+1x2+1
,求曲线y=f(x)在x=1的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
3x,x≥0
-x+3,x<0
设计算法和流程图,求f(x)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•浙江二模)已知f(x)=
3x,x≥0
(
1
3
)x,x<0
,则不等式f(x)<9的解集是
(-2,2)
(-2,2)

查看答案和解析>>

同步练习册答案