分析 由分段函数性质,先求出f($\frac{1}{8}$)=$lo{g}_{2}\frac{1}{8}$=-3,再计算f(f($\frac{1}{8}$)).
解答 解:∵函数f(x)=$\left\{\begin{array}{l}{1-{2}^{x},x≤0}\\{lo{g}_{2}x,x>0}\end{array}\right.$,
∴f($\frac{1}{8}$)=$lo{g}_{2}\frac{1}{8}$=-3,
∴f(f($\frac{1}{8}$))=f(-3)=1-2-3=$\frac{7}{8}$.
故答案为:$\frac{7}{8}$.
点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{14}$ | B. | 4 | C. | $\sqrt{17}$ | D. | $\sqrt{19}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com