精英家教网 > 高中数学 > 题目详情
16.已知椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),ab=2$\sqrt{3}$,离心率为$\frac{\sqrt{6}}{3}$.
(Ⅰ)求椭圆的方程;
(Ⅱ)过椭圆的右焦点F作斜率为k的直线l交椭圆于A、B两点,P为直线x=3上的一点,若△ABP为等边三角形,求直线l的方程.

分析 (Ⅰ)通过ab=2$\sqrt{3}$、e=$\frac{c}{a}$=$\frac{\sqrt{{a}^{2}-{b}^{2}}}{a}$=$\frac{\sqrt{6}}{3}$直接计算即可;
(Ⅱ)通过设直线l方程为:y=k(x-2)并与椭圆方程联立,利用韦达定理可得|AB|=$\frac{2\sqrt{6}(1+{k}^{2})}{1+3{k}^{2}}$、AB的中点M($\frac{6{k}^{2}}{1+3{k}^{2}}$,-$\frac{2k}{1+3{k}^{2}}$),利用直线MP的斜率为-$\frac{1}{k}$且xP=3可得|MP|=$\sqrt{1+\frac{1}{{k}^{2}}}$•$\frac{3(1+{k}^{2})}{1+3{k}^{2}}$,通过|MP|=$\frac{\sqrt{3}}{2}$|AB|计算即得结论.

解答 解:(Ⅰ)∵ab=2$\sqrt{3}$,e=$\frac{c}{a}$=$\frac{\sqrt{{a}^{2}-{b}^{2}}}{a}$=$\frac{\sqrt{6}}{3}$,
∴a2=6,b2=2,
∴椭圆的方程为:$\frac{{x}^{2}}{6}+\frac{{y}^{2}}{2}=1$;
(Ⅱ)由(I)知椭圆的右焦点F(2,0),
设直线l方程为:y=k(x-2),
联立直线l与椭圆方程,消去y整理得:
(1+3k2)x2-12k2x+12k2-6=0,
设A(x1,y1),B(x2,y2),
则x1•x2=$\frac{12{k}^{2}-6}{1+3{k}^{2}}$,x1+x2=$\frac{12{k}^{2}}{1+3{k}^{2}}$,
∴|AB|=$\sqrt{1+{k}^{2}}$|x1-x2|=$\frac{2\sqrt{6}(1+{k}^{2})}{1+3{k}^{2}}$,
设AB的中点为M(x0,y0),则x0=$\frac{1}{2}$(x1+x2)=$\frac{6{k}^{2}}{1+3{k}^{2}}$,
y0=$\frac{1}{2}$(y1+y2)=$\frac{k({x}_{1}+{x}_{2})-4k}{2}$=-$\frac{2k}{1+3{k}^{2}}$,
即有M($\frac{6{k}^{2}}{1+3{k}^{2}}$,-$\frac{2k}{1+3{k}^{2}}$),
若△ABP为等边三角形,则直线MP的斜率为-$\frac{1}{k}$,且xP=3,
∴|MP|=$\sqrt{1+\frac{1}{{k}^{2}}}$|x0-xP|=$\sqrt{1+\frac{1}{{k}^{2}}}$•$\frac{3(1+{k}^{2})}{1+3{k}^{2}}$,
∵|MP|=$\frac{\sqrt{3}}{2}$|AB|,
∴$\sqrt{1+\frac{1}{{k}^{2}}}$•$\frac{3(1+{k}^{2})}{1+3{k}^{2}}$=$\frac{\sqrt{3}}{2}$•$\frac{2\sqrt{6}(1+{k}^{2})}{1+3{k}^{2}}$,
解得k=±1,
∴直线l的方程为:y=±(x-2),
∴所求直线方程为:x-y-2=0或x+y-2=0.

点评 本题是一道直线与圆锥曲线的综合题,考查运算求解能力,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知关于x的不等式|x+a|-|x-3|+a<2015(a是常数)的解集是R,则实数a的取值范围是(-∞,1006).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设有一个回归方程为$\widehat{y}$=4-6x,则变量x增加一个单位时(  )
A.y平均增加4个单位B.y平均减少4个单位
C.y平均增加6个单位D.y平均减少6个单位

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设p:ω=1,q:f(x)=sin($ωx+\frac{π}{3}$)(ω>0)的图象关于点(-$\frac{π}{3}$,0)对称,则p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知数列{an}满足an+2-an=2,a1=1,a2=2,则{an}的前20项和为(  )
A.120B.210C.400D.440

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在区间[0,π]上随机取一个x,sin(x+$\frac{π}{6}$)≥$\frac{1}{2}$的概率为(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.通过市场调查,得到某产品的资金投入x(万元)与获得的利润y(万元)的数据,如表所示:
资金投入 x2 3  4  5  6
利润y 2 3  578
(1)画出表中数据对应的散点图;
(2)根据上表提供的数据,用最小二乘法求线性回归直线方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$;
(3)现投入资金15(万元),估计获得的利润为多少万元?
参考公式:
用最小二乘法求线性回归方程系数公式:$\stackrel{∧}{b}$=$\frac{\sum_{i-1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i-1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$=$\stackrel{∧}{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=$\frac{1+lnx}{x}$.
(Ⅰ)求函数的单调区间;
(Ⅱ)如果当x≥1时,不等式f(x)≥$\frac{k}{x+1}$恒成立,求实数k的取值范围;
(Ⅲ)求证:$\sum_{k=1}^n{[lnk+ln(k+1)]}>\frac{{{n^2}-n-1}}{n+1}(n∈{N^*})$.(说明:$\sum_{i=1}^n{x_i}$=x1+x2+…+xn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知a∈R,若关于x的方程x2+x-|a+$\frac{1}{4}$|+a2=0没有实根,则a的取值范围是(  )
A.(-∞,-1)∪($\frac{1+\sqrt{3}}{2}$,+∞)B.(-∞,$\frac{-1+\sqrt{3}}{2}$)∪(1,+∞)
C.(-∞,-1)∪(1,+∞)D.(-∞,$\frac{-1-\sqrt{3}}{2}$)∪($\frac{1+\sqrt{3}}{2}$,+∞)

查看答案和解析>>

同步练习册答案