精英家教网 > 高中数学 > 题目详情
三选一题(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)
A(几何证明选讲)如图,⊙O的两条弦AB,CD相交于圆内一点P,若PA=PB,PC=2,PD=8,OP=4,则该圆的半径长为   
B(坐标系与参数方程)曲线C1上的点到曲线C2上的点的最短离为   
C(不等式选讲)不等式|2x-1|-|x-2|<0的解集为   
【答案】分析:A,由相交弦定理,我们结合已知条件可求出PA的值,再由垂径定理,我们根据半弦长、弦心距、圆半径构造直三角形,满足勾股定理,易求出圆的半径;
B,根据已知求出圆的标准方程及直线的一般方程,代入点到直线距离公式,判断直线与圆的位置关系,进而即可求出直线到圆最短离;
C,利用零点分段法,对不等式在x不同的取值范围进行讨论,最后综合讨论结果,即可得到绝对值不等式的解集.
解答:解:A、由相交弦定理得:PA•PB=PC•PD,
又∵PA=PB,PC=2,PD=8,
∴PA=4,
由垂径定理得,PO⊥AB
又∵OP=4
∴R=
故答案为:
B、曲线C1的标准方程为:(x-1)2+y2=1,表示以(1,0)为圆心,以1为半径的圆,
曲线C2的一般方程为:x+y-1+2=0
则圆心到直线的距离d==2
故直线与圆相离,故直线到圆最短离为2-1=1,
故答案为:1
C、当x>2时,原不等式可化为:x+1<0,此时原不等式不成立;
时,原不等式可化为:3x-3<0,解得:
当x时,原不等式可化为:x+1>0,解得:-1
综上原不等式的解集为:(-1,1)
故答案为:(-1,1)
点评:本题考查的知识点是与圆有关的比例线段,圆的参数方程及绝对值不等式的解法,本题是选修4的选考内容,大家可以根据自己的选修情况,选择一题进行解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网三选一题(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)
A(几何证明选讲)如图,⊙O的两条弦AB,CD相交于圆内一点P,若PA=PB,PC=2,PD=8,OP=4,则该圆的半径长为
 

B(坐标系与参数方程)曲线C1
x=1+cosθ 
y=sinθ 
(θ为参数)
上的点到曲线C2
x=-2
2
+
1
2
t
y=1-
1
2
t
(t为参数)
上的点的最短离为
 

C(不等式选讲)不等式|2x-1|-|x-2|<0的解集为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(三选一,考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)
(1)(坐标系与参数方程选做题)在直角坐标系中圆C的参数方程为
x=1+2cosθ
y=
3
+2sinθ
(θ为参数),则圆C的普通方程为
(x-1)2+(y-
3
)2=4
(x-1)2+(y-
3
)2=4

(2)(不等式选讲选做题)设函数f(x)=|2x+1|-|x-4|,则不等式f(x)>2的解集为
{x|x<-7或x>
5
3
}
{x|x<-7或x>
5
3
}

(3)(几何证明选讲选做题) 如图所示,等腰三角形ABC的底边AC长为6,其外接圆的半径长为5,则三角形ABC的面积是
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(三选一,考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)
(1)(坐标系与参数方程选做题)在直角坐标系中圆C的参数方程为数学公式(θ为参数),则圆C的普通方程为________.
(2)(不等式选讲选做题)设函数f(x)=|2x+1|-|x-4|,则不等式f(x)>2的解集为________.
(3)(几何证明选讲选做题) 如图所示,等腰三角形ABC的底边AC长为6,其外接圆的半径长为5,则三角形ABC的面积是________.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年陕西省榆林市神木中学高三(上)数学寒假作业3(理科)(解析版) 题型:填空题

(三选一,考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)
(1)(坐标系与参数方程选做题)在直角坐标系中圆C的参数方程为(θ为参数),则圆C的普通方程为   
(2)(不等式选讲选做题)设函数f(x)=|2x+1|-|x-4|,则不等式f(x)>2的解集为   
(3)(几何证明选讲选做题) 如图所示,等腰三角形ABC的底边AC长为6,其外接圆的半径长为5,则三角形ABC的面积是   

查看答案和解析>>

同步练习册答案