精英家教网 > 高中数学 > 题目详情

有一边长为的正方形铁片,铁片的四角截去四个边长为的小正方形,然后做成一个无盖方盒。

(1)试把方盒的容积表示成的函数;
(2)求多大时,做成方盒的容积最大。

(1)
(2)当时,做成方盒的容积最大

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数.             
(1)求函数的定义域;
(2)当时,总有成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)
某工厂去年的某产品的年销售量为100万只,每只产品的销售价为10元,每只产品固定成本为8元.今年,工厂第一次投入100万元(科技成本),并计划以后每年比上一年多投入100万元(科技成本),预计销售量从今年开始每年比上一年增加10万只,第n次投入后,每只产品的固定成本为且n≥0),若产品销售价保持不变,第n次投入后的年利润为万元.
(Ⅰ)求出的表达式;
(Ⅱ)若今年是第1年,问第几年年利润最高?最高利润为多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某服装厂生产一种服装,每件服装的成本为40元,出厂单价定为60元,该厂为鼓励销售商订购,决定当一次订购量超过100件时,每多订购一件,订购的全部服装的出场单价就降低0.02元,根据市场调查,销售商一次订购量不会超过600件.
(1)设一次订购x件,服装的实际出厂单价为p元,写出函数p=f(x)的表达式;
(2)当销售商一次订购多少件服装时,该厂获得的利润最大?其最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)某产品生产单位产品时的总成本函数为.每单位产品的价格是134元,求使利润最大时的产量.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为了保护水资源,提倡节约用水,某市对居民生活用水收费标准如下:每户每月用水不超过6吨时每吨3元,当用水超过6吨但不超过15吨时,超过部分每吨5元,当用水超过15吨时,超过部分每吨10元。
(1)求水费y(元)关于用水量x(吨)之间的函数关系式;
(2)若某户居民某月所交水费为93元,试求此用户该月的用水量。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=|x-a|.
(Ⅰ)若不等式f(x)≥3的解集为{x|x≤1或x≥5},求实数a的值;
(Ⅱ)在(Ⅰ)的条件下,若f(x)+f(x+4)≥m对一切实数x恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)若上存在零点,求实数的取值范围;
(2)当时,若对任意的,总存在,使,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

据预测,我国在“十二五”期间内某产品关税与市场供应量的关系近似地满足(其中为关税的税率,且为市场价格,为正常数),当时的市场供应量曲线如图所示;
(1)根据图象求的值;
(2)若市场需求量为,它近似满足.
时的市场价格称为均衡价格,为使均衡价格控制在不低于9元的范围内,求税率的最小值.
 

查看答案和解析>>

同步练习册答案