精英家教网 > 高中数学 > 题目详情
14.对于函数$f(x)=\frac{1}{1-x}$,定义${f_1}(x)=f(x),{f_{n+1}}(x)=f[{{f_n}(x)}]\;\;(n∈{N^*})$.已知偶函数g(x)的定义域为(-∞,0)∪(0,+∞),g(1)=0;当x>0,且x≠1时,g(x)=f2015(x).
(1)求f2(x),f3(x),f4(x),并求出函数y=g(x)的解析式;
(2)若存在实数a,b(a<b)使得函数g(x)在[a,b]上的值域为[mb,ma],求实数m的取值范围.

分析 (1)根据函数关系进行求解即可.
(2)根据函数奇偶性的性质,结合函数的值域关系进行求解即可.

解答 解:(1)因为${f_1}(x)=f(x)=\frac{1}{1-x}\;({x≠1}),\;\;故$${f_2}(x)=f[{{f_1}(x)}]=\frac{1}{{1-\frac{1}{1-x}}}=1-\frac{1}{x}\;({x≠0,x≠1})$,$\begin{array}{l}{f_3}(x)=f[{{f_2}(x)}]=\frac{1}{{1-(1-\frac{1}{x})}}=x\;(x≠0,x≠1),\;\;\\{f_4}(x)=f[{{f_3}(x)}]=\frac{1}{1-x}\;\;(x≠0,x≠1),…(3分)\end{array}$
故对任意的n∈N,有f3n+i(x)=fi(x)(i=2,3,4),
于是${f_{2015}}(x)={f_{3×671+2}}(x)={f_2}(x)=1-\frac{1}{x}\;(x≠0,x≠1)$;$故当\;x>0,x≠1\;时,g(x)={f_{2015}}(x)=1-\frac{1}{x}$.$又g(1)=0,故当\;x>0\;时,g(x)=1-\frac{1}{x}$.
由g(x)为偶函数,$当\;x<0\;时,-x>0,g(x)=g(-x)=1-\frac{1}{-x}=1+\frac{1}{x}$.${因此}g(x)=\left\{\begin{array}{l}1+\;\frac{1}{x},\;x<0\\ 1-\frac{1}{x},\;x>0.\end{array}\right.=1-\;\frac{1}{|x|}$.…(6分)
(2)由于y=g(x)的定义域为(-∞,0)∪(0,+∞),
又a<b,mb<ma,可知a与b同号,且m<0;进而g(x)在[a,b]递减,且a<b<0.…(8分)
函数y=g(x)的图象,如图所示.由题意,有$\left\{\begin{array}{l}g(a)=1+\;\frac{1}{a}=ma\\ g(b)=1+\;\frac{1}{b}=mb\end{array}\right.$…(10分)

故a,b是方程$1+\;\frac{1}{x}=m\;x$的两个不相等的负实数根,即方程mx2-x-1=0在(-∞,0)上有
两个不相等的实根,于是$\begin{array}{l}\left\{\begin{array}{l}△=1+4m>0\\ a+b=\;\frac{1}{m}<0\\ ab=-\;\frac{1}{m}>0\end{array}\right.\\?-\frac{1}{4}<m<0.\end{array}$…(12分)
综合上述,得:实数m的取值范围为$({-\frac{1}{4},0})$.…(14分)
注:若采用数形结合,得出直线y=mx与曲线$y=1+\;\frac{1}{x}\;(x<0)$有两个不同交点,并进行求解也可.

点评 本题主要考查函数解析式的求解以及函数奇偶性的应用,考查学生的运算和推理能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.十八届五中全会公报指出:努力促进人口均衡发展,坚持计划生育的基本国策,完善人口发展战略,全面实施一对夫妇可生育两个孩子的政策,提高生殖健康、妇幼保健、托幼等公共服务水平.为了解适龄公务员对放开生育二胎政策的态度,某部门随机调查了100位30到40岁的公务员,得到情况如下表:
男公务员女公务员
生二胎4020
不生二胎2020
(1)是否有95%以上的把握认为“生二胎与性别有关”,并说明理由;
(2)把以上频率当概率,若从社会上随机抽取3位30到40岁的男公务员,记其中生二胎的人数为X,求随机变量X的分布列,数学期望.
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k00.0500.0100.001
k03.8416.63510.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在多面体PABCD中,△ABC是边长为2的正三角形,BD=DC=$\sqrt{3}$,AD=$\sqrt{5}$,PA⊥平面ABC.
(1)求证:PA∥平面BCD;
(2)求三棱锥D-BCP的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.向量$\overrightarrow a$,$\overrightarrow b$满足$|{\overrightarrow a}|=1$,$|{\overrightarrow a-\overrightarrow b}|=\frac{{\sqrt{3}}}{2}$,$\overrightarrow a$与$\overrightarrow b$的夹角为60°,则$|{\overrightarrow b}|$=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如图,已知双曲线C的右焦点为F,过它的右顶点A作实轴的垂线,与其一条渐近线相交于点B;若双曲线C的焦距为4,△OFB为等边三角形(O为坐标原点,即双曲线C的中心),则双曲线C的方程为${x^2}-\frac{y^2}{3}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在极坐标系中,已知曲线C1:ρcos(θ+$\frac{π}{3}$)=m和C2:ρ=4cosθ,若m∈(-1,3),则曲线C1与C2的位置关系是(  )
A.相切B.相交C.相离D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)(x∈D),若存在常数T(T>0),对任意x∈D都有f(x+T)=T•f(x),则称函数f(x)为T倍周期函数
(1)判断h(x)=x是否是T倍周期函数,并说明理由;
(2)证明:g(x)=($\frac{1}{4}$)x是T倍周期函数,且T的值是唯一的;
(3)若f(n)(n∈N*)是2倍周期函数,f(1)=1,f(2)=-4,Sn表示f(n)的前n 项和,Cn=$\frac{{S}_{2n}}{{S}_{2n-1}}$,求$\underset{lim}{n→∞}$Cn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知a,b表示两条不重合的直线,α,β表示两个不重合的平面,则下列命题中,真命题的序号为①③
①若a∥α,b⊥α,则 a⊥b.②若α⊥β,a?α,则a⊥β
③若a?α,α∥β,则a∥β.④若a∥b,a?α,则b∥α

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,已知四边形ABCD是矩形,AB=1,BC=2,PD⊥平面ABCD,且PD=3,PB的中点E,求异面直线AE与PC所成角的大小.(用反三角表示)

查看答案和解析>>

同步练习册答案