精英家教网 > 高中数学 > 题目详情
6.已知函数f(x)(x∈D),若存在常数T(T>0),对任意x∈D都有f(x+T)=T•f(x),则称函数f(x)为T倍周期函数
(1)判断h(x)=x是否是T倍周期函数,并说明理由;
(2)证明:g(x)=($\frac{1}{4}$)x是T倍周期函数,且T的值是唯一的;
(3)若f(n)(n∈N*)是2倍周期函数,f(1)=1,f(2)=-4,Sn表示f(n)的前n 项和,Cn=$\frac{{S}_{2n}}{{S}_{2n-1}}$,求$\underset{lim}{n→∞}$Cn

分析 (1)假设设h(x+T)=T•h(x)进而得出结论;
(2)通过设g(x+T)=T•g(x)并令x=0可知T=$\frac{1}{2}$,分T>$\frac{1}{2}$、T<$\frac{1}{2}$两种情况证明唯一性即可;
(3)利用f(n+2)=2•f(n)及f(1)=1、f(2)=-4分别计算出n为奇数、偶数时的值,进而利用等比数列的求和公式计算可知S2n=-3(2n-1)、S2n-1=-2n+3,计算即得结论.

解答 (1)结论:h(x)=x不是T倍周期函数.
理由如下:
依题意,设h(x+T)=T•h(x),则x+T=T•x对任意x恒成立,
∵T无解,
∴h(x)=x不是T倍周期函数;
(2)证明:设g(x+T)=T•g(x),则$(\frac{1}{4})^{x+T}$=T•$(\frac{1}{4})^{x}$对任意x恒成立,
令x=0,得$(\frac{1}{4})^{T}$=T,即T=$\frac{1}{2}$;
下证唯一性:
若T>$\frac{1}{2}$,T=$(\frac{1}{4})^{T}$<$(\frac{1}{4})^{\frac{1}{2}}$=$\frac{1}{2}$,矛盾;
若T<$\frac{1}{2}$,T=$(\frac{1}{4})^{T}$>$(\frac{1}{4})^{\frac{1}{2}}$=$\frac{1}{2}$,矛盾;
∴T=$\frac{1}{2}$是唯一的;
(3)解:依题意,f(3)=f(1+2)=2f(1)=2,
f(5)=f(3+2)=2f(3)=22
f(7)=f(5+2)=2f(5)=23

f(2n-1)=f(2n-3+2)=2f(2n-3)=2n-1
∴f(1)+f(3)+…f(2n-1)=1+2+22+…+2n-1=2n-1,
同理可得:f(2)+f(4)+…+f(2n)=-4(1+2+22+…+2n-1)=-4(2n-1),
∴S2n=f(1)+f(2)+…+f(2n)=-3(2n-1),
同理S2n-1=f(1)+f(2)+…+f(2n-1)=-2n+3,
∴$\underset{lim}{n→∞}$Cn=$\underset{lim}{n→∞}$$\frac{{S}_{2n}}{{S}_{2n-1}}$=$\underset{lim}{n→∞}$$\frac{3({2}^{n}-1)}{{2}^{n}-3}$=3.

点评 本题考查数列的求和与极限,考查分类讨论的思想,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.(1)已知log0.7(2x)<log0.7(x-1),求x的取值范围;
(2)求函数$y={log_{\frac{1}{2}}}({x^2}+4)$的定义域、值域和单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某校高安文科600名学生参加了12月的模拟考试,学校为了了解高三文科学生的数学、外语请客,利用随机数表法从抽取100名学生的成绩进行统计分析,将学生编号为000,001,002,…599
(1)若从第6行第7列的数开始右读,请你一次写出最先抽出的5个人的编号(下面是摘自随机数表的第4恒值第7行);
12 56 85 99 26  96 96 68 27 31  05 03 72 93 15  57 12 10 14 21  88 26 49 81 76
55 59 56 35 64  38 54 82 46 22  31 62 43 09 90  06 18 44 32 53  23 83 01 30 30
16 22 77 94 39  49 54 43 54 82  17 37 93 23 78  87 35 20 96 43  84 26 34 91 64
84 42 17 53 31  57 24 55 06 88  77 04 74 47 67  21 76 33 50 25  83 92 12 06 76 
(2)抽出的100名学生的数学、外语成绩如下表:
外语
及格
数学8m9
9n11
及格8911
若数学成绩优秀率为35%,求m,n的值;
(3)在外语成绩为良的学生中,已知m≥12,n≥10,求数学成绩优比良的人数少的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.对于函数$f(x)=\frac{1}{1-x}$,定义${f_1}(x)=f(x),{f_{n+1}}(x)=f[{{f_n}(x)}]\;\;(n∈{N^*})$.已知偶函数g(x)的定义域为(-∞,0)∪(0,+∞),g(1)=0;当x>0,且x≠1时,g(x)=f2015(x).
(1)求f2(x),f3(x),f4(x),并求出函数y=g(x)的解析式;
(2)若存在实数a,b(a<b)使得函数g(x)在[a,b]上的值域为[mb,ma],求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知正六边形A1A2…A6内接于圆O,点P为圆O上一点,向量$\overrightarrow{OP}$与$\overrightarrow{O{A_i}}$的夹角为θi(i=1,2,…,6),若将θ1,θ2,…,θ6从小到大重新排列后恰好组成等差数列,则该等差数列的第3项为$\frac{5π}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若动圆C过定点A(4,0),且在y轴上截得弦MN的长为8,则动圆圆心C的轨迹方程是(  )
A.$\frac{x^2}{4}-\frac{y^2}{12}=1$B.$\frac{x^2}{4}-\frac{y^2}{12}=1(x>2)$C.y2=8xD.y2=8x(x≠0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知四个数3,5,x,7的平均数为6,则这组数据的标准差为$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在数列{an}中,a1=20,a2=30,an+1=3an-an-1(n∈N+,n≥2).
(1)当n=2,3时,分别求出a${\;}_{n}^{2}$-an-1•an+1的值,并判断a${\;}_{n}^{2}$-an-1?an+1(n∈N+,n≥2)是否为定值;
(2)若5an+1•an+1为完全平均数,求满足条件的所有正整数n的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,点A、B分别是角α、β的终边与单位圆的交点,$0<β<\frac{π}{2}<α<π$.
(1)若$α=\frac{3}{4}π$,$cos({α-β})=\frac{2}{3}$,求sin2β的值;
(2)证明:cos(α-β)=cosαcosβ+sinαsinβ.

查看答案和解析>>

同步练习册答案