精英家教网 > 高中数学 > 题目详情

【题目】徐州市为加快新老城区的融合并进一步缓解交通压力,现经过食品城至新城区(昆仑大道)和食品城至高速入口(迎宾大道),分别修建地铁2号线和快速通道,如图,已知两条公路夹角为60°,为了便于施工拟在两条公路之间的区域内建一混凝土搅拌站P,并分别在两条公路边上建两个中转站MN (异于点A),要求PMPNMN=2(单位:千米).

(1)

(2)为多大时,使得混凝土搅拌站产生的噪声对食品城的影响最小(即搅拌站与食品城的距离最远).

【答案】(1)见解析;(2)设计∠AMN60时,混凝土搅拌站产生的噪声对食品城的影响最小.

【解析】试题分析:(1)根据正弦定理,即可θ表示AM;(2)根据三角函数的图象和性质,即可求出函数的最值.

试题解析:

(1)因为∠AMNθ,在△AMN中,

因为MN=2,所以AMsin(120°-θ) .

(2)在△APM中,cos∠AMP=cos(60°+θ).

由(1AMsin(120°-θ)

所以AP2AM2MP2-2 AM·MP·cos∠AMP

sin2(120°-θ)+4-2×2×sin(120°-θ) cos(60°+θ)

sin2(θ+60°)-sin(θ+60°) cos(θ+60°)+4

[1-cos (2θ+120°)]-sin(2θ+120°)+4…

=- [sin(2θ+120°)+cos (2θ+120°)]+

sin(2θ+150°),θ∈(0,120°).

当且仅当2θ+150°=270°,即θ=60°时,AP2取得最大值12,即AP取得最大值2

答:设计∠AMN60时,混凝土搅拌站产生的噪声对食品城的影响最小.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】北京时间3月10日,CBA半决赛开打,采用7局4胜制(若某对取胜四场,则终止本次比赛,并获得进入决赛资格),采用2﹣3﹣2的赛程,辽宁男篮将与新疆男篮争夺一个决赛名额,由于新疆队常规赛占优,决赛时拥有主场优势(新疆先两个主场,然后三个客场,再两个主场),以下是总决赛赛程:

日期

比赛队

主场

客场

比赛时间

比赛地点

17年3月10日

新疆﹣辽宁

新疆

辽宁

20:00

乌鲁木齐

17年3月12日

新疆﹣辽宁

新疆

辽宁

20:00

乌鲁木齐

17年3月15日

辽宁﹣新疆

辽宁

新疆

20:00

本溪

17年3月17日

辽宁﹣新疆

辽宁

新疆

20:00

本溪

17年3月19日

辽宁﹣新疆

辽宁

新疆

20:00

本溪

17年3月22日

新疆﹣辽宁

新疆

辽宁

20:00

乌鲁木齐

17年3月24日

新疆﹣辽宁

新疆

辽宁

20:00

乌鲁木齐


(1)若考虑主场优势,每个队主场获胜的概率均为 ,客场取胜的概率均为 ,求辽宁队以比分4:1获胜的概率;
(2)根据以往资料统计,每场比赛组织者可获得门票收入50万元(与主客场无关),若不考虑主客场因素,每个队每场比赛获胜的概率均为 ,设本次半决赛中(只考虑这两支队)组织者所获得的门票收入为X,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列命题:

①若 是第一象限角且 ,则

②函数上是减函数;

是函数 的一条对称轴;

④函数 的图象关于点 成中心对称;

⑤设 ,则函数 的最小值是,其中正确命题的序号为 __________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正项数列{an}的首项a1=1,且(n+1)a +anan+1﹣na =0对n∈N*都成立.
(1)求{an}的通项公式;、
(2)记bn=a2n﹣1a2n+1 , 数列{bn}的前n项和为Tn , 证明:Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(x﹣2)ex+a(x+2)2(x>0).
(1)若f(x)是(0,+∞)的单调递增函数,求实数a的取值范围;
(2)当 时,求证:函数f(x)有最小值,并求函数f(x)最小值的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业招聘中,依次进行A科、B科考试,当A科合格时,才可考B科,且两科均有一次补考机会,两科都合格方通过.甲参加招聘,已知他每次考A科合格的概率均为 ,每次考B科合格的概率均为 .假设他不放弃每次考试机会,且每次考试互不影响.
(I)求甲恰好3次考试通过的概率;
(II)记甲参加考试的次数为ξ,求ξ的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知{an}是首项为19,公差为-2的等差数列,Sn为{an}的前n项和.

(1)求通项anSn

(2)设{bnan}是首项为1,公比为3的等比数列,求数列{bn}的通项公式及前n项和Tn.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在考试测评中,常用难度曲线图来检测题目的质量,一般来说,全卷得分高的学生,在某道题目上的答对率也应较高,如果是某次数学测试压轴题的第1、2问得分难度曲线图,第1、2问满分均为6分,图中横坐标为分数段,纵坐标为该分数段的全体考生在第1、2问的平均难度,则下列说法正确的是(
A.此题没有考生得12分
B.此题第1问比第2问更能区分学生数学成绩的好与坏
C.分数在[40,50)的考生此大题的平均得分大约为4.8分
D.全体考生第1问的得分标准差小于第2问的得分标准差

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知不等式|x+3|﹣2x﹣1<0的解集为(x0 , +∞)
(Ⅰ)求x0的值;
(Ⅱ)若函数f(x)=|x﹣m|+|x+ |﹣x0(m>0)有零点,求实数m的值.

查看答案和解析>>

同步练习册答案